

www.project-tardis.eu

Grant Agreement No.: 101093006 Topic: HORIZON-CL4-2022-DATA-01-03
Call: HORIZON-CL4-2022-DATA-01 Type of action: HORIZON- RIA

1

D4.1: Report on the Desirable Properties for
Analysis

Revision: v.3.0

Work package WP4

Task T4.1, T4.2, T4.3 and T4.4

Due date 30/Sep/2023

Submission date 30/Sep/2023

Deliverable lead Nobuko Yoshida (OXF)

Version 2.0

Authors

Nobuko Yoshida (OXF); António Ravara (NOVA); Sebastian Mödersheim

(DTU); Ivan Prokic (UNS); Silvia Ghilezan (UNS); Ping Hou (OXF); Simona

Kasterovic (UNS), João Costa Seco (NOVA), Tamara Stefanovic (UNS), Carla

Ferreira (NOVA)

Reviewers Carlos Coutinho (CMS); Nuno Preguiça (NOVA)

Abstract

This document reports on the identified desirable properties for analysis. This

deliverable will outline the list of properties for which analyses will be developed

in the rest of the WP; the properties will be categorised according to the task

to which they will be assigned.

Keywords

interaction behaviour, verification and validation, analysis, behavioural types,

security, data conversion and integrity, deployment and orchestration

integration.

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 2 of 57 © 2023-2025 TaRDIS Consortium

DISCLAIMER

Funded by the European Union (TARDIS, 101093006). Views and opinions expressed are
however those of the author(s) only and do not necessarily reflect those of the European Union.
Neither the European Union nor the granting authority can be held responsible for them.

COPYRIGHT NOTICE

© 2023 - 2025 TaRDIS Consortium

Project funded by the European Commission in the Horizon Europe Programme

Nature of the

deliverable:

to specify R, DEM, DEC, DATA, DMP, ETHICS, SECURITY, OTHER*

Dissemination Level

PU Public, fully open, e.g. web (Deliverables flagged as public will be

automatically published in CORDIS project’s page)
✔

SEN Sensitive, limited under the conditions of the Grant Agreement

Classified R-UE/ EU-R EU RESTRICTED under the Commission Decision No2015/ 444

Classified C-UE/ EU-C EU CONFIDENTIAL under the Commission Decision No2015/ 444

Classified S-UE/ EU-S EU SECRET under the Commission Decision No2015/ 444

* R: Document, report (excluding the periodic and final reports)

DEM: Demonstrator, pilot, prototype, plan designs

DEC: Websites, patents filing, press & media actions, videos, etc.

DATA: Data sets, microdata, etc.

DMP: Data management plan

ETHICS: Deliverables related to ethics issues.

SECURITY: Deliverables related to security issues

OTHER: Software, technical diagram, algorithms, models, etc.

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 3 of 57 © 2023-2025 TaRDIS Consortium

EXECUTIVE SUMMARY

The TaRDIS project’s objective is to build a distributed programming toolbox that simplifies the
development of decentralized applications deployed in a diverse setting. Work Package 4
(WP4) focuses on pioneering formal analyses to assess the soundness, security, and reliability
of heterogeneous swarms. These analyses will be specifically tailored to the TaRDIS models,
ensuring that desirable security, data integrity, AI coordination, and interaction properties are
satisfied, aligning with TaRDIS use cases and requirements. To this end, in this report, we
categorise the properties regarding to TaRDIS use cases that necessitate analysis and
verification. Additionally, we delve into both the existing and advanced verification techniques
that will be employed to validate these properties.
Our key contributions for this report encompass various aspects:

Firstly, we identify the challenges arising from intelligent swarms as well as use cases related
to verification and analysis.

Secondly, we categorise the properties that will undergo in-depth analysis in the upcoming
WP4 deliverables, organising them based on the specific tasks to which they are assigned.

Thirdly, we classify the existing verification techniques and discuss how TaRDIS will go beyond
the state-of-the-art.

Finally, we summarise the desirable models and properties that are specifically relevant to the
TaRDIS use cases.

Here are some key highlights we aim to showcase as the outcomes of the M9 report, which
effectively tackle the challenges related to formally analysing the soundness, security, and
reliability of heterogeneous swarms:

• OXF has published two papers: one that addresses the challenge to account for
unreliability and failures persists for session types, and another that supports protocols
allowing dynamic participant joining.

o David Castro-Perez and Nobuko Yoshida, “Dynamically Updatable Multiparty
Session Protocols: Generating Concurrent Go Code from Unbounded
Protocols”, in ECOOP 2023. Click or tap here to enter text.

o Adam D. Barwell, Ping Hou, Nobuko Yoshida, and Fangyi Zhou, “Designing
Asynchronous Multiparty Protocols with Crash-Stop Failures”, in ECOOP 2023.
(Barwell et al., 2023)

• NOVA has published five papers, two dealing with replicated data consistency levels,
two dealing with concurrency control and safe data use, and one dealing with data
confidentiality.

o Kevin De Porre, Carla Ferreira, and Elisa Gonzalez Boix, “VeriFx: Correct
Replicated Data Types for the Masses”, in ECOOP 2023. (De Porre, 2023)

o Marco Giunti, Hervé Paulino, and António Ravara, “Anticipation of Method
Execution in Mixed Consistency Systems”, in SAC 2023. (Giunti et al., 2023)

o Hervé Paulino, Ana Almeida Matos, Jan Cederquist, Marco Giunti, João Matos,
and António Ravara, “AtomiS: Data-Centric Synchronization Made Practical”,
OOPSLA 2023. (Paulino, 2023)

o Pedro Rocha and Luís Caires, “Safe Session-Based Concurrency with Shared
Linear State”, ESOP 2023. (Rocha & Caires, 2023)

o Eduardo Geraldo, João Costa Seco, and Thomas Hildebrandt. Data-Dependent
Confidentiality in DCR Graphs. In PPDP 2023. (E. Geraldo et al., 2023)

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 4 of 57 © 2023-2025 TaRDIS Consortium

● UNS has published two papers: one that develops in edge systems a Python Testbed
for two generic Federated Learning Algorithms – a centralized and a decentralized, and
the follow-up that formally specifies and verifies these two algorithms using the
Communicating Sequential Processes calculus (CSP) and the Process Analysis Toolkit
(PAT) model checker.

o Ivan Prokić, Silvia Ghilezan, Simona Kašterović, Miroslav Popovic, Marko
Popovic, Ivan Kaštelan, “Correct orchestration of Federated Learning generic
algorithms: formalisation and verification in CSP”. In ECBS 2023. CoRR

abs/2306.14529 (2023). (Prokic et al., 2023)
o Miroslav Popovic, Marko Popovic, Ivan Kastelan, Miodrag Djukic, Silvia

Ghilezan, “A Simple Python Testbed for Federated Learning Algorithms” in
ZINC 2023. (Popovic et al., 2023)

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 5 of 57 © 2023-2025 TaRDIS Consortium

TABLE OF CONTENTS

EXECUTIVE	SUMMARY	..	3	

TABLE	OF	CONTENTS	..	5	

LIST	OF	FIGURES	..	7	

ABBREVIATIONS	...	8	

1.	 INTRODUCTION	...	9	

1.1	 FORMAL	SPECIFICATIONS	...	9	

1.2	 RESULTS	SUMMARY	..	11	

1.3	 DELIVERABLE	STRUCTURE	..	11	

2.	 THE	CHALLENGE	OF	INTELLIGENT	SWARMS	...	12	

2.1	 GENERAL	INTRODUCTION	...	12	

2.2	 IDENTIFIED	CHALLENGES	BY	USE	CASE	..	12	

2.2.1	 Actyx	..	12	

2.2.2	 EDP	...	12	

2.2.3	 GMV	..	13	

2.2.4	 Telefónica	..	13	

3.	 CATEGORIES	OF	PROPERTIES	...	14	

3.1	 BEHAVIOURAL	PROPERTIES	TO	DISCIPLINE	INTERACTIONS	...	14	

3.2	 PROPERTIES	FOR	DATA	MANAGEMENT	AND	REPLICATION	..	15	

3.3	 PROPERTIES	FOR	SECURITY	..	16	

3.4	 PROPERTIES	FOR	DECENTRALISED	MACHINE	LEARNING	MODELS	..	17	

4.	 VERIFICATION	TECHNIQUES	...	20	

4.1	 CATEGORIES	OF	VERIFICATION	TECHNIQUES	..	20	

4.1.1	 Behavioural	Types	for	Interaction	Analysis	...	20	

4.1.2	 Verification	Techniques	for	Distributed	Data	Management	...	21	

4.1.3	 Verification	Techniques	for	Security	Properties	...	21	

4.1.4	 Verification	Techniques	for	Federated	Learning	...	22	

4.2	 LOOKING	BEYOND	THE	STATE-OF-THE-ART	..	22	

4.2.1	 Type	Systems	for	Behavioural	Analysis	of	Interactions	..	22	

4.2.2	 Verification	of	RDTs	..	25	

4.2.3	 Verification	of	Security	Properties	...	26	

4.2.4	 Verification	of	Federated	Learning	Orchestration	..	31	

5.	 EXPECTED	RESULTS	FOR	USE	CASES	...	42	

5.1	 FAILURE	MODELS	...	42	

5.2	 DESIRABLE	LIVENESS	PROPERTIES	...	43	

5.3	 DESIRABLE	SAFETY	PROPERTIES	...	43	

5.4	 DESIRABLE	SECURITY	AND	PRIVACY	PROPERTIES	..	44	

5.5	 DESIRABLE	DATA	CONVERGENCE	AND	INTEGRITY	PROPERTIES	..	46	

6.	 CONCLUSIONS	...	47	

BIBLIOGRAPHY	..	48	

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 6 of 57 © 2023-2025 TaRDIS Consortium

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 7 of 57 © 2023-2025 TaRDIS Consortium

LIST OF FIGURES

Figure 1: Top-down view of MPST with crash. .. 23

Figure 2: Workflow of Teatrino. .. 24

Figure 3: The generic centralised one-shot FLA execution. .. 33

Figure 4: The generic decentralised one-shot FLA execution. .. 33

Figure 5: CSP model for centralised algorithm. ... 36

Figure 6: CSP model for decentralised algorithm. ... 38

Figure 7: Verifying centralised algorithm. ... 40

Figure 8: Verifying decentralised algorithm. ... 41

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 8 of 57 © 2023-2025 TaRDIS Consortium

ABBREVIATIONS

ML Machine Learning

DL Deep Learning

FL Federated Learning

FLA(s) Federated Learning Algorithm(s)

PTB-FLA Python Testbed for Federated Learning Algorithms

ST Session Types

MPST Multiparty Session Types

CFSM Communicating Finite State Machines

API Application Programming Interface

AGV Automated Guided Vehicle

ERP Enterprise Resource Planning

MES Manufacturing Execution System

PNT Position, Navigation and Timing

DER Distributed Energy Resources

SGAM Smart-Grid Architectural Model

IoT Internet of Things

DP Differential Privacy

CSP Communicating Sequential Processes calculus

CSP Communicating Sequential Processes calculus

PAT Process Analysis Toolkit

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 9 of 57 © 2023-2025 TaRDIS Consortium

1. INTRODUCTION

The Work Package 4 (WP4) develops novel formal analyses for determining whether a
heterogeneous swarm is sound, secure, and reliable. Specifically, analyses will apply to the
TaRDIS models to ensure that desirable security, data integrity, AI coordination, and
interaction properties are satisfied, with properties chosen according to the TaRDIS use cases
and requirements. WP4 will facilitate safe usage of the AI and data primitives from WP5 and
WP6. The developed tooling will be incorporated into the TaRDIS APIs and IDE and AI
optimisation framework.

1.1 FORMAL SPECIFICATIONS

This document reports the M6 delivery (D4.1) which focuses on formal specifications for
requirements delivered in D2.1 “Report on the initial requirements analysis from co-design". In
particular, it will focus on formal definitions of properties based on behavioural types, replicated
data convergence and integrity requirements, security and privacy requirements, and
federated learning orchestration for heterogeneous swam. The key points with respect to
Tasks 4.1, 4.2, 4.3 and 4.4 are given below.

Task 4.1

Task 4.1 [Leader OXF] develops novel formal analyses for interaction behaviour. For D4.1,
this task defines novel properties and techniques based on behavioural types. In particular, to
determine whether systems expressed using the TaRDIS models (T3.1) satisfy desirable
behavioural properties, e.g., protocol compliance, communication safety, deadlock freedom
and liveness, we explain how to extend current state-of-the art techniques, e.g., syntax-based
analyses and model-checking-based analyses, to support an event-based setting where
system entities are heterogeneous, may dynamically join, leave, fail, and not have complete
views of the system. We examine the requirement and use case analyses (D2.1) to determine
the behavioural properties of communication that are critical in decentralised systems in the
cloud-edge continuum. We also discuss how to compositionally analyse these defined formal
properties.

Specifically, Task 4.1 uses the theories of:

1. Typestates (Strom & Yemini, 1986a), which considers that resources have internal
state that determines which operations are “safe” and define the behaviour of such
resources in terms of state machines, akin to protocol descriptions.

2. Session Types (Honda, K., Vasconcelos, V. T., & Kubo, M., 1998), namely adhering to
the propositions-as-types foundation, based on Linear Logic, to describe
communication patterns of systems’ components over channels.

3. Multiparty Session Types (Honda et al., 2008, 2016), which is a type discipline for
concurrent and distributed systems, a global description of the system’s intended
behaviour considering all participants’ actions.

Task 4.2

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 10 of 57 © 2023-2025 TaRDIS Consortium

Task 4.2 [Leader NOVA] concerns the development of compositional static analysis
techniques for checking data convergence and integrity in the presence of data replication.
The developments in these first six months were threefold.

Firstly, assuming the nodes that replicated the data have the same consistency model (weak
consistency), VeriFx – a specialised programming language for Replicated Data Types (RDTs)
– is under development: programmers implement RDTs atop functional collections and
express correctness properties that are verified automatically.

Secondly, assuming nodes can have different consistency models, to deal efficiently with
sequences of operations on different replicas, it is useful to know which operations commute
with others and thus, when can an operation not requiring synchronisation be anticipated wrt
others requiring it, thus avoiding unnecessary waits.

Finally, to ensure data integrity in concurrent applications, it is crucial to guarantee access to
shared resources in mutual exclusion. The standard approach, which is difficult as reasoning
is cumbersome, is control centric. We develop an alternative methodology that is instead data-
centric, only requiring to identify the resources to protect.

Task 4.3

Task 4.3 [Leader DTU] develops novel and connect existing verification techniques for security
properties. Amongst other things, we consider privacy-type properties aimed at protecting the
relationship between data, actions, and entities. Task 4.3 employs both symbolic methods, to
detect vulnerabilities early in the design, and abstract interpretation techniques that can
capture key properties of devices to enable security proofs. We plan to formalise the security
proofs for key building blocks (that are made available in the TaRDIS API) in Isabelle/HOL to
obtain a very high security guarantee through machine-checked proofs. We will employ
compositional reasoning by defining assumptions and guarantees of devices in their interaction
such that the composition of an entire system is secure even when some devices have
vulnerabilities or cannot be trusted. The composition will define minimal guarantees that
devices must satisfy (e.g., not leaking certain keys) so that recovery is still possible. We are
currently investigating how to incorporate information flow analysis to analyse code under the
assumption that the communication primitives ensure given confidentiality and integrity
properties. The analyses developed in Task 4.3 will complement those from the other WP4
tasks, enabling reliable communication that also respects privacy protocols, that data is
replicated consistently and securely, and that distributed AI primitives use data which they are
entitled to access. Task 4.3 will first identify desirable security analyses, leveraging
requirements and use case analyses (WP2); and second, iteratively develop compositional
analyses for the identified properties, incorporating feedback from TaRDIS evaluation tasks,
and ensuring integration with the unified interface and tooling developed by WP3.

Task 4.4

Task 4.4 [Leader UNS] develops an integration framework for the safe orchestration of the
decentralised machine learning model (Leader UNS). Overall, the framework is facilitating the
coordination of the machine learning primitives developed in WP5 over a communication
system using techniques based on process algebras and behavioural types. To the best of our

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 11 of 57 © 2023-2025 TaRDIS Consortium

knowledge, there is no previous work on the formal verification of distributed machine learning
algorithms.
Thus, as a starting point Task 4.4 has made an effort to build a common language for the two
research communities, specifically, Federated Learning and Behavioural Types. Towards this
goal and for D4.1, in Task 4.4

• We have used process algebra of Communication Sequential Processes (CSP)
(Hoare, 1985) to provide simple formal specifications of two generic federated learning
algorithms (Popovic et al., 2023).

• Based on these CSP specifications we performed model-checking-based analyses
using Process Analysis Toolkit (PAT) (Sun et al., 2009).

• We have proved the correctness of the two generic FL algorithms by showing their
deadlock freedom and termination.

Further, for D4.1, Task 4.4 inspects the federated learning requirements of the use cases
(D2.1) to determine the behavioural properties that are to be defined and verified.

1.2 RESULTS SUMMARY

Our key contributions are:

• We identify the challenges of intelligent swarms and use cases related to
verification and analysis.

• We categorise the properties that will undergo further analysis in the subsequent
deliverables of the WP4, organising them according to their respective assigned tasks.

• We classify the existing verification techniques and discuss how the TaRDIS will

advance beyond the state-of-art.

• We summarise the desirable models and properties which are specifically related
to the TaRDIS use cases.

Overall, we consolidate various requirements, properties, and advanced techniques for
analysing interactions in distributed systems. These are applied to TaRDIS models to ensure
the satisfaction of desirable security, data integrity, AI coordination, and interaction properties,
tailored to specific TaRDIS use cases and requirements.

1.3 DELIVERABLE STRUCTURE

We begin the report by providing a comprehensive introduction to the complexities of intelligent
swarms, highlighting the associate challenges tied to each use case (Section 2). We then
categorise the properties that will be analysed throughout the rest of the WP based on their
respective tasks (Section 3). Subsequently, in Section 4, we classify the existing verification
techniques related to these properties, delving into both the state-of-the-art and upcoming
advancements in verification methodologies. Furthermore, we delineate potential avenues for
future research. Finally, we present a concise list of the desirable properties unique to each
use case, which necessitate verification (Section 5).

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 12 of 57 © 2023-2025 TaRDIS Consortium

2. THE CHALLENGE OF INTELLIGENT SWARMS

2.1 GENERAL INTRODUCTION

Developing and managing distributed systems is a highly complex task requiring expertise
across different domains. This complexity becomes more pronounced when considering
swarm systems which are highly dynamic and require fully or partial decentralised solutions to
cope with the scale and heterogeneity of devices and execution environments. Developing
correct, reliable, and secure systems in such contexts requires developers to reason about
aspects across multiple layers of the system and across heterogenous devices and
communication mediums.

TaRDIS development environment aims to assist developers in building correct systems by
taking advantage of sophisticated techniques, as described in this document, to automatically
analyse the interactions between the different components of the distributed system. This aims
to ensure correctness-by-design of applications considering specifications of both the
application invariants and the considered execution environment.

2.2 IDENTIFIED CHALLENGES BY USE CASE

A comprehensive discussion of the specific challenges pertaining to different use cases can
be found in Section 3 of Deliverable 2.1. In this subsection, we provide a concise overview of
the challenges we have identified concerning the analysis of interactions within distributed
systems for each use case.

2.2.1 Actyx

Context: Next-generation factories are built from intelligent components that collaborate
autonomously to perform mission-critical tasks without central infrastructure. Implementing this
dynamic machine-to-machine cooperation correctly and resiliently is not yet possible. Rigid
classical automation approaches lack the flexibility and agility to efficiently express such high-
level orchestration.

Challenges: Actyx has identified challenges related to the specification and verification of the
general structure of communication and participant behaviour in their swarm system, the
integration of these behaviours within their system using specific programming languages, and
ensuring the resilience of the system.

2.2.2 EDP

Context: The multi-level smart charging concept is built to overcome the foreseen electric
vehicle charging problem. The concept is divided into three core energy and network levels.
These levels aim to provide a local energy balance by matching energy generation with local
flexible loads of the consumption – energy consumers with controlled usage of energy.

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 13 of 57 © 2023-2025 TaRDIS Consortium

Challenges: The challenges identified by EDP primarily pertain to the decentralization of their
energy grid control system and the corresponding adjustments required for components,
communication, and data configurations.

2.2.3 GMV

Context: Next-generation of swarm satellite constellations in Low Earth Orbit will be
characterized by an increasing number of satellites for which Orbit Determination and Time
will be more and more challenging. They will strongly take advantage of the Inter-Satellite-Link
technology for both communication and navigation measurements, with the goal of achieving
more autonomy respect to the ground.

Challenges: GMV's identified challenges involve decentralising a single satellite into a large
constellation of satellites, specifying, and verifying the required interactions between these
satellites, and achieving autonomy to reduce dependency on ground station support.

2.2.4 Telefónica

Context: Smart homes include a wide range of devices designed to work together as a swarm
to make our lives more convenient and comfortable. Many devices are built to incorporate
artificial intelligence algorithms to improve their functionality. However, the heterogeneity of
these devices makes it difficult to share the intelligence without sharing data with each other
or to a central location, raising concerns about privacy. Further, with so many devices collecting
data about us, there is a risk that our personal information may be compromised. The use-
case aims to develop a privacy-preserving federated learning framework that can work in a
hierarchical fashion.

Challenges: The identified challenges by Telefónica address investigating a Hierarchical
Federated Learning framework for mobile environments that enables cross-device and cross-
app (i.e., on-device cross silo) Federated Learning, and offer an as-a-service solution to
provide app developers with user-friendly tools and APIs.

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 14 of 57 © 2023-2025 TaRDIS Consortium

3. CATEGORIES OF PROPERTIES

In this section, we categorise the properties that will undergo further analysis in the subsequent
deliverables of the WP, organising them according to their respective assigned tasks.

3.1 BEHAVIOURAL PROPERTIES TO DISCIPLINE INTERACTIONS

The primary objective of analyses for interactions behaviour is to develop innovative
techniques based on behavioural types, specifically, Typestates and (Multiparty) Session
Types. These techniques are particularly aimed at determining whether systems expressed
using the TaRDIS models satisfy desirable interaction behavioural properties. These
properties include:

Communication Safety

The exchanged data in a well-defined sequence of interactions (referred as a communication
protocol) adheres to the expected type, ensuring the absence of any type errors. For instance,
consider the interactions between browser clients and a server in a web-based distributed
system, communication safety ensures that all endpoints progress without type errors,
conforming to a specified protocol.

Deadlock-freedom

Communications will eventually terminate. More specifically, a communication task can be
completed through permitted interactive actions. For instance, consider a communication
protocol, deadlock freedom ensures that the protocol will end successfully, allowing all
participants to avoid getting stuck.

Termination

Communications will terminate finitely. More specifically, a communication task can be
completed through a finite number of permitted interactive actions. For instance, consider a
message-passing process, termination ensures that the process will reach the final state in a
finite number of reduction steps.

Never-termination

Communications will persist indefinitely. More specifically, a communication task can be
executed infinitely through permitted interactive actions. For instance, consider a message-
passing process, never-termination indicates that the process can always infinitely reduce.

Liveness

Every event in a communication task can be completed through permitted interactive actions.
For instance, consider a message-passing process, liveness guarantees that each input or
output action of the process can be performed eventually.

Protocol conformance and completion

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 15 of 57 © 2023-2025 TaRDIS Consortium

Valid sequences of calls of an API’s methods can be defined with a typestate specification
(henceforth called protocol). The code can be statically type-checked to ensure that clients
following the protocol never generate run-time errors like null-pointer exceptions (a safety
property known as protocol conformance). Moreover, in the absence of divergent computation,
it is also possible to ensure that such client code complete the API’s protocol (a weak liveness
property known as protocol completion). In the context of a communication protocol, local
conformance of all participants ensures the network's overall conformance to the initial
protocol. Likewise, when considering a message-passing process, protocol conformance
guarantees that the process behaves conforming to its declared types.

3.2 PROPERTIES FOR DATA MANAGEMENT AND REPLICATION

Heterogenous swarms require the development of decentralized data management
techniques that rely on data replication to provide high availability and low latency. These
techniques resort to weak consistency solutions enhanced with support for strong consistency
when required by applications. When adopting weak consistency models, a replica executes
locally an operation requested by a client without any coordination with other replicas and
immediately returns to the client. The operation is later propagated in the background, leading
to different execution orders at different replicas. To guarantee that replicas’ state converge it
is necessary to address the conflicting concurrent updates made by clients at different replicas.
Replicated Data Types (RDTs) that resemble sequential data types (e.g., counters, sets,
maps), guarantee convergence-by-design by providing efficient and deterministic data
reconciliation solutions. These data types will serve as basic building blocks for developing
heterogenous swarm applications. However, although individual RDTs guaranteed
convergence, when combining RDTs that might not the case.

Even though RDTs guarantee state convergence, most do not guarantee well-formedness
properties of application data, commonly called integrity invariants (e.g., the account balance
must be nonnegative). In general, these data properties are global properties that cannot be
ensured under weak consistency and require coordination between replicas. To address this
tension between consistency and availability, TaRDIS will provide support for mixed
consistency models that may execute some operations under weak consistency and others
under strong consistency. For instance, a replicated counter that can be both incremented and
decremented ensures convergence as both operations commute. However, if we consider the
integrity invariant that the counter must be nonnegative, then this invariant cannot be
guaranteed without some coordination, but strong consistency can be avoided. The insight is
that increments can be executed under eventual consistency, while decrements require strong
consistency.

Lastly, dynamic partial replication will also be needed. There are multiple reasons for having
partial replication. For instance, to keep private data in the clients’ devices, storage capacity
limitations of devices, among others.

The properties to be studied here are concerned with the following two properties.

State convergence

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 16 of 57 © 2023-2025 TaRDIS Consortium

This property expresses that replicas eventually converge to the same state. As discussed
above, in weak consistency models each replica might execute operations in different orders.
Therefore, it is crucial to ensure that, independently of the execution order, two replicas that
have received the same operations do indeed converge to the same state.

Data integrity preservation

This property is concerned with guaranteeing data integrity invariants of the application data.
These include referential integrity, uniqueness constraints, numeric constraints, among others.

Beyond verifying these properties for heterogenous swarm systems at large, the goal is to
provide static analysis tools that help developers determine the necessary mechanisms to
ensure these two properties. For instance, given the application code assuming a sequential
setting, determine where RDTs should be used, and where stronger consistency is needed.

3.3 PROPERTIES FOR SECURITY

For verifying the security and privacy properties of the system, we are going to employ two
basic approaches: Firstly, the verification of communication protocols that use cryptographic
means to protect communication from leaking information, tampering with information and
unauthorised access. Secondly, we will use information flow control techniques applied to
event-based languages to analyse systems for illegal flows that are introduced by
programming mistakes. This aims to prevent classified information from being “leaked” into
public places and to prevent untrusted information from “leaking” into a trusted information
base.

Transmission Security Properties

Here are the classical properties of security protocols: authentication and confidentiality for the
data transmitted. This includes that the parties agree on each other’s name and the content of
the transmission, that the transmission is not a replay, and that the data is kept confidential.
Such properties can be specified by marking which data must be kept confidential between
whom and who is expected to be authenticated on which data. Special cases are injective vs.
non-injective agreement, unicast vs. multicast, and unauthenticated endpoints.

Information Flow Properties

In the analysis for information flow control of the code, we have the counterpart of the
transmission properties, namely lattices of labels for confidentiality and integrity levels, so that
information of a certain confidentiality/integrity level cannot be used in places of lower
confidentiality level nor of higher integrity level, respectively. The specification is in the form of
lattices of security levels, which can be linked to the roles of individuals in the system, owners,
readers, or writers of data. We follow and will push the state-of-the-art on the use of dependent
security levels to make the analysis more flexible and usable in real cases.

Compositional Specification

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 17 of 57 © 2023-2025 TaRDIS Consortium

More generally, an API interface between protocols (with shared databases) can be specified,
or an interface between an application and transmission protocols, specifying which interaction
the components have on their interface, which modifications they can make to the shared
databases, and when they can declassify shared secrets. This then requires each component
to perform only actions allowed by their interface (Hess et al., 2023), under the assumption
that all other components do as well.

Privacy-type Properties

These are more advanced properties for communication protocols, such as unlinkability, i.e.,
a third person cannot see if two actions were performed by the same device/participant or a
new one. Such a property can be specified via privacy variables (e.g., agent names) and
releasing formulas about them (e.g., the owner of a device may know which actions are done
by their device, and which are not).

Cryptographic Compliance

When a security protocol is specified as a multi-party session type, we want to infer that for a
given cryptographic knowledge of each role, each role can perform all their steps. Moreover,
we can automatically derive all cryptographic checks that the role can (and in fact must)
perform at each step of the protocol; this in fact ensures that the role is executable and
unambiguous.

Accountability

Whenever there are no cryptographic means to enforce that users behave according to
protocol, we want to ensure that they are accountable for their actions, i.e., when violating the
rules (that can include general laws, but also contractual obligations and protocol descriptions)
they run the risk of being detected and reprehended. Accountability involves a specification of
three things: the rules that limit what actions participants may and may not do; what can
possibly be detected; and a “judicial” process, detailing how to derive in case of a detection of
misbehaviour. To verify this property is that the judicial process will never “convict” an innocent
participant, it will convict at least somebody, and for certain misbehaving actions, there is a
positive risk to get convicted. This allows then a verification of the system under the assumption
that that said those actions will not occur.

Resilience and Recoverability

These are more advanced properties of security protocols that we describe in more detail in
Section 4.2 (advanced beyond the state-of-the-art) and where it is at this point not entirely clear
how to specify them within TaRDIS. We will therefore leave this for future deliverables.

3.4 PROPERTIES FOR DECENTRALISED MACHINE LEARNING MODELS

Federated Learning Models (FL) are the best suited Machine Learning Models for
heterogenous swarms (McMahan, 2019). The communication in FL can be organised as a
centralised organisational structure, decentralised organisational structure, or their
combination. Each of these communicational structures can have different topologies which
have to ensure that the necessary information is propagated.

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 18 of 57 © 2023-2025 TaRDIS Consortium

One of the main goals is to identify the communication topologies of the use cases,
distinguishing e.g., between static hierarchical scenarios, dynamic peer-to-peer scenarios, and
combinations of the two. The objective is to ensure that the TaRDIS models support the most
dynamic scenarios, and address the more static scenarios as special cases, without
introducing excessive burden or difficulties for the programmers.

Swarm topology sufficiency: The topology of the system must be dense enough to ensure
that the necessary information is propagated. The communication can be organised in two
ways: centralised organisational structure and decentralised organisational structure. In both
organisational structures different topologies can be implemented such as: star topology, tree
topology, full mesh topology, partial mesh topology and ring topology. In star topology, all
nodes (devices) are connected to a central node (device). A variant of star topology is tree

topology. This topology has a hierarchical flow of data. In a full mesh topology, each node
is connected to every other node in the network. This topology ensures the highest level of
redundancy, since there is always an alternative path for data to reach its destination if one
path fails. However, this topology is expensive and difficult to manage in large networks. In
order to reduce the cost and complexity of the network a partial mesh topology can be used.
A partial mesh topology is a compromise between the full mesh topology and other topologies
such as star topology. In this topology, some nodes are connected to all other nodes, while
others are connected to few nodes. Another type of network topology is ring topology. In this
topology, nodes are connected in a circular manner, forming a closed loop. Data travels around
the ring in one direction, passing through each device until it reaches its destination.

These techniques are particularly aimed at determining whether systems expressed using the
TaRDIS models satisfy desirable FL properties, which include:

FL Roles of agents

Some of the agents involved in the FL algorithm can have limited capabilities. The FL Roles of
agents property ensure clients receive only the data they can process. Assigning roles to
agents can ensure that “small” clients cannot receive “large” data. Moreover, for “low power”
clients it ensures that the data and frequency can be limited, whereas the “higher power”
clients can function in full capacity. This contributes to the efficiency of the model and green
energy.

FL Data privacy

Ensure statically that only the model parameters can be sent by the clients and servers, and
not the actual data that always should remain private to the clients and servers. This
contributes to privacy protection in the model.

FL Message delivery

In case of asynchronous communications, agents acting like servers should have large enough
buffers to support receiving messages from all clients preventing system congestion with
received messages. This contributes to the liveness of the model.

FL Clients equality

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 19 of 57 © 2023-2025 TaRDIS Consortium

Clients participating in one round of FL algorithm should equally contribute to the algorithm -
behaviours in which a single client sends multiple messages within a single round should be
avoided. This would prevent cases in which a single client is making unwanted large influence
on the FL algorithm. This contributes to the fairness of the model and uniform participation of
the clients.

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 20 of 57 © 2023-2025 TaRDIS Consortium

4. VERIFICATION TECHNIQUES

In this section, we categorise the existing verification techniques relevant to the identified
desirable properties, exploring both the current state-of-the-art and forthcoming advancements
in verification approaches. Additionally, we outline potential directions for future work.

4.1 CATEGORIES OF VERIFICATION TECHNIQUES

4.1.1 Behavioural Types for Interaction Analysis

Significant research effort has been devoted to ensuring the safety and reliability of
communicating systems. A key approach is that of behavioural types (Hüttel et al., 2016) (BTs),
which specify the intended interaction patterns of systems, such that well-typed systems
adhere to the prescribed interactions. BTs can be incorporated into existing languages
(Ancona et al., 2016) and describe both internal and external system behaviour. The main
approaches for the former are typestates (Strom & Yemini, 1986b); for the latter, contracts,
and session types (Honda et al., 1998).

Session types provide a lightweight, type system–based approach to message-passing
concurrency. This type discipline is further advanced by Multiparty Session Types (MPST),
which enable the specification and verification of communication protocols among multiple
message-passing processes in concurrent and distributed systems. MPST ensure that
protocols are designed to guarantee desirable behavioural properties, i.e., communication
safety, deadlock-freedom, and liveness (Scalas & Yoshida, 2019). By adhering to a specified
MPST protocol, participants can communicate reliably and efficiently. From a practical
perspective, MPST have been implemented in various programming languages, e.g. Go
(Castro-Perez et al., 2019), Java (Hu & Yoshida, 2016), Rust (Cutner et al., 2022), Python
(Demangeon et al., 2015), Scala (Cledou et al., 2022), Typescript (Miu et al., 2021), and
OCaml (Yoshida et al., 2021), enabling their applications and providing safety guarantees in
real-world programs.

Based on behavioural type system methodologies, the type-level behavioural properties that
align with the scope of the TaRDIS APIs are verified for correctness utilising exhaustive static
reasoning methods, such as static type checking and model checking, whenever feasible.
These approaches enable us to provide comprehensive and concise feedback to programmers
regarding any identified problems.

● Type Checking API’s Code against Protocol Specifications:
o Incorporating the protocol as its behavioural specification within the API code allows

to check/enforce that client code interacting with the API correctly follows the
protocol.

o Moreover, the protocol can also be used to monitor requests arriving at the API,
only allowing, for each client, the sequences of requests prescribed by the protocol.

● Model Checking Type-Level Behavioural Properties:
o Express the type-level behavioural properties, such as communication safety,

deadlock-freedom, termination, never-termination, and liveness, as modal µ-
calculus formulas (Groote & Mousavi, 2014); and

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 21 of 57 © 2023-2025 TaRDIS Consortium

o Use model checkers, such as mCRL2 (Bunte Olavand Groote, 2019) to check
the correctness of these behavioural properties.

4.1.2 Verification Techniques for Distributed Data Management

• Verification and Synthesis of RDTs:
o The verification and synthesis of RDTs rely on static analyses done at compile time.

In the operation-based consistency approach, the analyses evaluate a high-level
specification of the application, more specifically, each operation pre and post-
conditions, plus the data invariants to be guaranteed. Several works (Gotsman et
al., 2016; Houshmand, 2019; Li et al., 2020) rely on this high-level specification to
determine the safety of an RDT, however these works differ on the assumptions
made. While some assume causal consistency (Gotsman et al., 2016), others rely
only on eventual consistency (Houshmand, 2019; Li et al., 2020). According to the
CISE (Gotsman et al., 2016), a logic for reasoning about the correctness of a
distributed application operating on top of a causally-consistent database, an RDT
is safe if: (1) it is safe in sequential execution; (2) converges; and (3) the
precondition of each operation is stable under the effect of any other concurrent
operation. Formally, a database computation is defined by a partial order on
operations, representing causality, and a conflict relation (between operations) that
further constrains the partial order. A crucial aspect of this logic is that instead of
reasoning about all possible interactions between operations, the logic reasons
over each operation individually under a set of assumptions on the behaviour of
other operations. Recently, the other works (Houshmand, 2019; Li et al., 2020)
extend the above safety conditions with a dependency analysis that is used to
determine which operations require causal delivery or whether eventual
consistency is enough. These (four) safety conditions can be leveraged to define a
deterministic ordering relation between concurrent operations, thus enabling the
construction of RDTs from sequential data types. The ordering relation is used at
runtime to avoid conflicts by locally (re-)ordering conflicting operations when
possible and coordinating operations only if correctness cannot be guaranteed
otherwise.

• Conflict and Dependency Analyses:
o Language-based static analysis can extract information at compile-time on which

operations can commute with which other operations and thus get information that
can be used by the run-time support to decide on call anticipations of operations in
replicas without compromising consistency. Data-centric concurrency control
(DCCC) shifts the reasoning about concurrency restrictions from control structures
to data declaration. It is a high-level declarative approach that abstracts away from
the actual concurrency control mechanism(s) in use.

4.1.3 Verification Techniques for Security Properties

For the verification of security protocols, several methods and tools exist that we plan to employ
and improve upon, namely:

• Abstract Interpretation, e.g., like ProVerif and PSPSP (Blanchet, 2016; Hess et
al., 2021)

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 22 of 57 © 2023-2025 TaRDIS Consortium

• Model-checking tools like OFMC (Mödersheim & Viganò, 2009).

• Privacy-verification tools like Noname (Fournet et al., 2023).

A major aspect of integrating different methods is compositional reasoning, i.e., modelling
components with their interfaces, ensuring every component adheres to their interface, and an
attacker cannot interfere with the components in a way that arises only from the composition.
As far as feasible, we plan to use the PSPSP/StateParComp framework of the proof assistant
Isabelle/HOL, which ensures that the composition is machine-checked. This is especially
helpful in composition since subtle requirements may otherwise be overlooked. Moreover, it
allows for the use of the automated verification module PSPSP on many components.

Information flow techniques are applied in this context in complement to the verification of
security protocols to ensure the proper cryptographic properties. Information flow checks for
confidentiality and integrity of data assuming that all communication and interaction work within
the expected parameters. The expected techniques to be used here vary from static type
checking, when possible, to dynamic verification with runtime monitors when necessary (E.
Geraldo, Santos, & Costa Seco, 2021). Additionally to using a hybrid approach to information
flow adapted to declarative event-based languages (E. Geraldo et al., 2023), we are also
applying a technique called value-dependent security labels (E. Geraldo et al., 2023; E.
Geraldo, Santos, & Costa Seco, 2021; Lourenço & Caires, 2015) that allows for a more flexible
and fine-grained definition of security compartments that dynamically adapt to the data being
processed and the context of the computation, e.g. the user accessing the data.

4.1.4 Verification Techniques for Federated Learning

Like other communication protocols, we can use the MPST for the specification of federated
learning protocols and rely on type-checking (possibly combined with model-checking) to verify
their desirable properties. However, some of the federated learning protocols utilize
communication patterns that cannot be directly modelled using the existing MPST models.
Another direction toward this goal is to

• Use Communicating Sequential Processes Calculus (CSP) (Hoare, 1985) for modelling
federated learning protocols. The CSP provides modelling of the concurrency primitives
as follows

o the system components are CSP processes;
o communication between the system components is performed through the

communication channels;
o the system of parallel processes communicating asynchronously (i.e., without

barrier synchronization) is assembled via interleaving of the CSP processes.
• Express a behavioural property of considered protocols (e.g., safety, liveness,

deadlock freedom) as a linear temporal logic formula and use model-checkers, such
as Process Analysis Toolkit (PAT) (Sun et al., 2009), to verify the correctness of the
property.

4.2 LOOKING BEYOND THE STATE-OF-THE-ART

4.2.1 Type Systems for Behavioural Analysis of Interactions

State-of-the-art: Extensions to core theories of session types and multiparty session types
include features to support heterogeneous swarms: Failure handling extensions include affine
sessions, permitting processes to fail, and coordinator-based failure handling techniques

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 23 of 57 © 2023-2025 TaRDIS Consortium

(Viering et al., 2021); other extensions enable dynamically evolving connections between
protocol participants (Hu & Yoshida, 2017) and dynamically sized participant pools
(Demangeon & Honda, 2012). Recent works preliminarily address compositional verification
(Barbanera et al., 2021) of open systems (Horne, 2020) and a session-typed, higher-order,
core language (𝖢𝖫𝖠𝖲𝖲) that supports concurrent computation with shared linear state (Rocha
& Caires, 2021).

Beyond state-of-the-art: In WP4, Task 4.1, we intend to build upon the above approaches,
enabling the application of behavioural types to heterogeneous swarms.

𝖢𝖫𝖠𝖲𝖲, the first proposal for a foundational language able to flexibly express realistic concurrent
programming idioms, features a type system ensuring all the following three key properties:
𝖢𝖫𝖠𝖲𝖲 programs never misuse or leak stateful resources or memory, they never deadlock, and
they always terminate. 𝖢𝖫𝖠𝖲𝖲 expressiveness is illustrated with several examples involving
memory-efficient linked data structures, sharing of resources with linear usage protocols, and
sophisticated thread synchronisation.

In order to address the challenge to account for unreliability and failures persists for session
types, (Barwell et al., 2023) has introduced a toolchain that utilises asynchronous MPST with
crash-stop semantics to support failure handling protocols. Additionally, to support protocols
in which participants can join an already existing session (dynamic participants), (Castro-Perez
& Yoshida, 2023) has proposed multiparty session types extended with the ability to add
unbounded participants dynamically during a protocol execution.

Multiparty protocols with crash-stop failures

We introduce a top-down methodology for designing asynchronous multiparty protocols with
crash-stop failures: (1) We use an extended asynchronous MPST theory, which models crash-
stop failures (Cachin et al., 2011), and show that the usual session type guarantees remain
valid, i.e. communication safety, deadlock-freedom, and liveness; (2) We present a toolchain,
Teatrino, for implementing asynchronous multiparty protocols, under our new asynchronous
MPST theory, in Scala, using the Effpi concurrency library (Scalas et al., 2019)

Figure 1: Top-down view of MPST with crash.

As depicted in Figure 1, the top-down design of multiparty protocols with crash-stop failures
begins with a given global type (top), and implementations rely on local types (bottom) for
participants, obtained from the global type. Well-typed implementations (processes) that
conform to a global type are guaranteed to be correct by construction, enjoying full guarantees
(safety, deadlock-freedom, liveness) from the theory.

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 24 of 57 © 2023-2025 TaRDIS Consortium

We model crash-stop failures, i.e., a process may fail arbitrarily and cease to interact with
others. This model is simple and expressive and has been adopted by other approaches
(Barwell et al., 2022; Brun & Dardha, 2023).Using global types in our design for handling
failures in multiparty protocols presents two distinct advantages: (1) global types provide a
simple, high-level means to both specify a protocol abstractly and automatically derive local
types; and (2) desirable behavioural properties such as communication safety, deadlock-
freedom, and liveness are guaranteed by construction. We focus on asynchronous systems,
where messages are buffered whilst in transit, since most communication in the real distributed
world is asynchronous.

Figure 2: Workflow of Teatrino.

On the practical side, we present a code generator toolchain, Teatrino, to implement our
MPST theory. As depicted in Figure 2, our toolchain takes an asynchronous multiparty protocol
as input, using the protocol description language Scribble (Yoshida et al., 2013), and generates
Scala code using the Effpi concurrency library as output. Our code generation technique, as
well as the Effpi library itself, utilises the type system features introduced in Scala 3, including
match types and dependent function types, to encode local types in Effpi. This approach
enables us to specify and verify program behaviour at the type level, resulting in a more
powerful and flexible method for handling concurrency. By extending Scribble and Effpi to
support crash detection and handling, our toolchain Teatrino provides a lightweight way for
developers to take advantage of our theory, bridging the gap on the practical side. We
demonstrate the feasibility of our methodology and evaluate Teatrino with examples
incorporating crash handling behaviour.

Dynamically updatable multiparty session protocols

Existing MPST frameworks do not support protocols with dynamic unbounded participants and
cannot express many common programming patterns that require the introduction of new
participants into a protocol. This poses a barrier for the adoption of MPST in languages that
favour the creation of new participants (processes, lightweight threads, etc) that communicate
via message passing, such as Go or Erlang. To tickle this challenge, we introduce Dynamically

Updatable Multiparty Session Protocols (DMst), a new MPST theory that supports protocols
with an unbounded number of fresh participants, whose communication topologies are
dynamically updatable. We prove that DMst guarantees deadlock-freedom and liveness. We
implement a toolchain, GoScr (Go-Scribble), which generates Go implementations from DMst,
ensuring by construction, that the different participants will only perform I/O actions that comply
with a given protocol specification. We evaluate our toolchain by (1) implementing
representative parallel and concurrent algorithms from existing benchmarks, textbooks and
literature; (2) showing that GoScr does not introduce significant overheads compared to a
naive implementation, for computationally expensive benchmarks; and (3) building three
realistic protocols (dynamic task delegation, recursive Domain Name System, and a parallel
Min-Max strategy) in GoScr that could not be represented with previous theories of session
types.

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 25 of 57 © 2023-2025 TaRDIS Consortium

Next Steps: We will expand upon the research developed in (Barwell et al., 2023) to study
different crash models (e.g., crash-recover), as well as failures of other components (e.g., link
failures). In addition, we aim to generalise failure handling to accommodate the new crash
models and failures, while also relaxing network reliability assumptions. This will enable
systems to effectively address network and hardware failures.

We plan further to enhance MPST to incorporate time specifications, affinity, and exception-
handling mechanisms. This will tackle the challenges of handling failures, particularly timeouts,
that may occur during the execution of communication protocols.

We will also extend MPST to facilitate the dynamic joining and leaving of protocol participants,
leveraging (Castro-Perez & Yoshida, 2023) and work on Conversation Types, and explore the
integration of verification techniques such as model checking to augment BT and MPST
applicability. Moreover, we will study the composition techniques of MPST to enable more
comprehensive forms of open system reasoning, fostering both compositional and broader
understandings of system behaviour.

All these next-step efforts will provide methodologies to facilitate the reliability of
communications across all heterogeneous swarms, while aiding in the verification of properties
within the initial TaRDIS toolset.

4.2.2 Verification of RDTs

State-of-the-art: RDTs verified with VeriFx can be transpiled to mainstream languages
(currently Scala and JavaScript). VeriFx provides libraries for implementing and verifying
Conflict-free Replicated Data Types (CRDTs) and operational transformation functions. These
libraries implement the general execution model of those approaches and define their
correctness properties.

Beyond the state-of-the-art: Currently there are two alternative approaches for the
verification of RDTs, operation-based or data-centric. We aim to combine these two separate
verification techniques. Moreover, we aim to analyze the correctness of RDTs that are built by
composing existing ones.

Commutation of operations with different consistency requirements

State-of-the-art: To achieve an automatic approach to determine operations commutation, we
develop a language-based static analysis to extract information at compile-time and thus get
information that can be used by the run-time support to decide on call anticipations of
operations in replicas without compromising consistency. We illustrate the formal analysis on
several paradigmatic examples and briefly present a proof-of-concept implementation in Java.

Beyond the state-of-the-art: We plan to mechanically prove sound the approach described.
The algorithms are already implemented in Coq and the envisaged results are formally stated.
We will build on this work to develop the proofs.

Data integrity in concurrent applications

State-of-the-art: We developed AtomiS, a new DCCC approach that requires only qualifying
types of parameters and return values in interface definitions, and of fields in class definitions.

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 26 of 57 © 2023-2025 TaRDIS Consortium

The latter may also be abstracted away in type parameters, rendering class implementations
virtually annotation-free. From this high-level specification, a static analysis infers the atomicity
constraints that are local to each method, considering valid only the method variants that are
consistent with the specification, and performs code generation for all valid variants of each
method. The generated code is then the target for automatic injection of concurrency control
primitives that are responsible for ensuring the absence of data-races, atomicity-violations, and
deadlocks.

Beyond the state-of-the-art: We will show that AtomiS formally guarantees thread-safety
properties like absence of atomicity violations, data-races, and deadlocks.

4.2.3 Verification of Security Properties

Protocol Verification

State-of-the-art: There is a rich body of research on the verification, where we limit ourselves
to black-box models of cryptography (aka Dolev-Yao-style models (Dolev & Yao, 1983)) where
we assume that the intruder only uses the normal cryptographic operators (i.e., composing and
decomposing messages with known keys) but does not attempt crypto-analysis. One line of
works is in bounded model-checking with symbolic techniques (Mödersheim & Viganò, 2009)
that allow for analysing protocols with rather complex concepts, but need to impose a bound
on the number of steps that honest agents can perform, or otherwise would not terminate on
secure protocols. In fact, this bound usually has to be usually extremely low (two or three
protocol sessions) and thus these approaches work very well for quickly finding security flaws,
but have limited value for positive statements.

To overcome the infinity and state-explosion problem, some tools follow an abstract
interpretation approach, most notably the tool ProVerif (Blanchet, 2016). The abstract
interpretation here maps fresh messages that have been created in the same context to the
same constant, and also ignores the temporal structure, lumping together all messages that
are ever available to the intruder, or rather an over-approximation thereof. One can then often
efficiently prove that this over-approximation contains no secrets without the exploration of a
state-space. While this works very well on simple protocols, the underlying monotonous
framework does not allow for protocols that have a mutable long-term state such as a database
of requests that have not been processed yet. For this reason, several tools have considered
a modified version of the abstraction approach, to allow for a small amount of state while
maintaining the advantages of abandoning the state space exploration, namely AIF/AIF-
omega/set-pi (Mödersheim & Bruni, 2016) to abstract data by membership in sets, StatVerif
(Arapinis et al., 2011) to abstract by the state of some memory cells, and GS-Verif (Cheval,
Cortier, et al., 2018) to handle mutable maps.

Another is the inductive method of Paulson in the proof assistant Isabelle/HOL (Bella, 2007;
Paulson, 1998). The advantage of this approach is that proofs are machine-checked, so do
not rely on the correctness of a verification tool. Moreover, the nature of such a proof assistant
does allow a wide range of proof techniques (basically what is accepted mathematics) where
a particular abstraction or model-checking approach may not work. On the other hand, most
of the proof work has to be done manually with only smaller proof steps being done

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 27 of 57 © 2023-2025 TaRDIS Consortium

automatically by the engine. The work PSPSP (Hess et al., 2021) integrates into Isabelle/HOL
the abstraction approach of AIF, allowing for automated proofs for protocols with long-term
mutable state that have the high security of machine checked proofs.

Beyond the state-of-the-art: We plan to deploy these tools for security verification in TaRDIS,
and this is likely to work “out-of-the-box” for many problems already. However, we envision
several extensions. First, some cryptographic primitives require modelling of algebraic
properties (e.g., applying a verification step to a zero-knowledge proof, as in the EDP case
study) and the support for algebraic reasoning is a challenge for all these tools. Moreover,
several modern protocols use ratchet mechanisms, which are not supported by the tools
currently either, and that are in some sense at odds with the abstract interpretation approaches
denoted above. We therefore plan to extend and adapt the abstraction approach for ratchet
mechanisms. Moreover, we will investigate alternative ways to prove such protocols manually
in Isabelle/HOL and try to obtain a general paradigm for conducting such proofs. The long-
term goal is to obtain methods for handling larger classes of protocols automatically.

Protocol Composition

State-of-the-art: When running several protocols together on the same communication
medium, where the protocol may share for instance the same public-key infrastructure, there
can arise new attacks that the protocols in isolation would not have had, e.g., the intruder can
abuse a message from one protocol and play it in the context of another protocol where it is
interpreted in a different way by participants. The motivation for protocol composition is that
the verification of the variety of protocols for instance on the Internet is far too big to verify them
together as one system. Moreover, we cannot expect all protocol developers in the world to
coordinate their efforts with all other protocol developers. Finally, a simple update to one
protocol may require the entire system to be verified again. The first works on protocol
composition concern just parallel composition, i.e., protocols that are basically unrelated
except that they share a key infrastructure and the communication medium. Here the main
proof argument is that this composition is sound as long as messages of the two protocols are
sufficiently different such that they cannot be abused by the intruder in another protocol. A next
step is sequential composition, where one the result from one protocol (e.g., a negotiated
session key) is the input to the next protocol.

A major generalisation has been achieved with the works of Hess et al (Hess et al., 2023) to
allow for the composition of stateful protocols. This in particular allows for sets to be shared
between protocols. A typical example is a web server that is “speaking” several protocols, and
maintains a database of all orders/tasks that are currently open. In this way, a complex service
can be decomposed into smaller units that can be verified independently. This paradigm is so
general that it subsumes parallel composition and sequential composition. The fact that this is
also implemented in Isabelle/HOL and connected to the PSPSP tool allows for a complete
machine-verified security proof of complex systems where small components have been either
verified automatically or manually. This is particularly interesting as the compositionality
theorems often have subtle requirements and the entire proof is only accepted when all these
requirements are satisfied.

Another relevant development is the vertical composition result of Gondron et al. (Gondron &
Mödersheim, 2021). Here the idea is that one protocol provides a kind of communication

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 28 of 57 © 2023-2025 TaRDIS Consortium

channel that can be used by an application protocol to transmit payload messages. This result
builds on the aforementioned stateful composition result: the payload protocol that wants to
send a payload message from A to B puts the payload message into a shared set outbox(A,B)
where the channel protocol picks it up, applies encryption operations to it (or, if needed, an
entire hand-shake protocol between A and B) and sends out the encrypted message on an
insecure communication medium. On B’s end, the channel protocol unpacks the received
message, performs necessary checks (e.g., message authentication codes) and then delivers
the message into the shared set inbox(B,A), where the application can pick it up. For the
application protocol this is no more involved than sending and receiving operations and being
able to rely on the guarantee given by the channel (e.g., authentication/integrity and
confidentiality), but its verification is independent of how the channel protocol works. Dually,
the channel protocol can be oblivious to the messages the application protocol is transmitting.
It is ensured that this works both in the case that the payload message is known or unknown
to the intruder, as well as both when the payload message is fresh or repeated.

Beyond the State-of-the-art: We plan to offer as part of the TaRDIS API a variety of such
channels or, more generally, message transmission interfaces. This will include the many
standard channels like those provided by TLS where we have typically an unauthenticated
client and an authenticated server, and this can be composed with an authentication
mechanism (e.g., password-based login, SSO, OAuth) to authenticate the client and obtain a
full secure channel.

A major development we plan is to combine the verification of security protocols with the
verification of information flow of the TaRDIS applications via the compositionality reasoning.
The idea is that we define a security lattice for confidentiality and integrity that is combined
with access control, so that data in the program is labelled within this lattice, and similar are
the API calls for sending and receiving messages that connect to the security protocols. On
the protocol side, we have then to verify that the transmission mechanism is strong enough to
ensure the requires integrity, confidentiality, and authorization requirements; on the application
side we have to verify that no information flows in a way that contradicts the security policy
induced by the lattice, i.e., that unauthorised entities cannot manipulate data and data is not
leaked to them.

While the initial goal is to (manually) verify a set of transport mechanisms used in the case
studies, we aim for a general automated verification of such vertical composition, and that
embedded into the Isabelle proof assistant if feasible.

Protocol Privacy

State-of-the-art: Privacy-type properties for security protocols are more challenging than
standard secrecy goals, because they are not about the secrecy of randomly chosen
cryptographic secrets like a secret key, but about guessable data such as the names of
participants, requested orders, etc. An example relevant to the project is unlinkability, i.e., that
an observer cannot tell whether two actions have been performed by different entities or the
same entity. The classical approach here are observational equivalence approaches (Blanchet
et al., 2008; Cortier et al., 2007; Delaune et al., 2008) in some form: a notion of
indistinguishability between processes that is applied to two possible scenarios. In the example
we may have a process where any number of cards can perform one single session with a

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 29 of 57 © 2023-2025 TaRDIS Consortium

card reader and a process where each card can run multiple sessions. There have been
several approaches towards this verification problem: DEEPSEC (Cheval, Kremer, et al.,
2018) is currently probably the most advanced tool in that it supports the most privacy
properties, but it is limited to a bounded number of sessions. The infinite session tools like
ProVerif have been equipped with a notion of bi-processes, i.e., processes where each
message has a left and right variant. This allows for integration into the unbounded verification
approaches; however, it requires, roughly speaking, that all conditions in the program either
yield true for both variants or false for both, i.e., the two variants can be distinguished based
on conditions.

With alpha-beta privacy (Mödersheim & Viganò, 2019) another approach was proposed that
departs from distinguishability-based notions and rather represents a state space where every
state contains as a formula beta the information that the intruder can infer from their
observations and their knowledge of the protocol - this is basically a symbolic execution of the
protocol by the intruder who does in general not know all the concrete values and thus not
whether a condition evaluates positively or negatively. Besides that, every state has a formula
alpha that describes what information has been publicly released and the intruder is thus
cleared to know. It is then defined as a violation of privacy if in any reachable state the intruder
can infer from beta any (relevant) information about the payload data that was not released in
alpha. There is a first prototype implementation of an automated verification tool for alpha-beta
privacy for a bounded number of sessions (Fournet et al., 2023). This is similar to DEEPSEC
and other bounded session approaches in that similar challenges have to be overcome, and
the state explosion hits already for rather small examples.

Beyond the state-of-the-art: For TaRDIS, privacy-type properties can be highly relevant,
since we want to prevent, e.g., in a collaborative environment where not all participants trust
each other, that one cannot directly observe a competitors customer base or working patterns.
Since the specification of desired privacy properties as observational equivalence can be a
challenge for programmers, we see an advantage in being able to specify simply where
information is released; however, this also need an extension over existing alpha-beta privacy,
as we usually will deal with releases not to a general public, but rather to selected
communication partners.

Moreover, in connection with verifying compositionality security protocols with information flow
analysis of protocols, we believe it can be sufficient that programmers just need to specify the
security labels for the communication end-points and data, and the privacy verification can
infer a specification of alpha-beta privacy from there. This will minimise the burden on
programmers and designers in specifying the properties that must be analysed. We thus plan
to extend compositionality results also for alpha-beta privacy properties and develop infinite-
state verification techniques tailored to channel protocols, namely exploiting that the channels
in a vertical composition are oblivious to the content of the payload messages. As explained
above, this restricts the problem to fall into a much simpler class of privacy properties that
conditions of the channel protocol do not depend on.

Behavioural types for security

State-of-the-art: Multiparty session types have already been used to describe security
protocols and their properties, even though the concept is geared towards concurrency

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 30 of 57 © 2023-2025 TaRDIS Consortium

properties like deadlock-freedom. For instance, (Bruni et al., 2021) describes a privacy-
enhancing protocol between non-trusting parties using the general API of a trusted platform
module. Such specifications can allow for a more comprehensive and intuitive view of the
communication structure and is thus beneficial for programmers, especially given the
envisioned use of MPSTs throughout the project.

Beyond the state-of-the-art: It turns out that in such descriptions we cannot directly obtain
the local behaviour of each participant by an endpoint projection: it is necessary to understand
what the recipient of a message can check (e.g., by decryption, comparing cryptographic
hashes and MACs) and how they can compose messages from their current knowledge. This
can help avoid subtle specification mistakes: that programmers forget to specify checks that
can and should be made, or that a formal model has messages that one end sends but the
other can never receive. In both cases an actually vulnerable protocol may falsely be classified
as secure. We are currently developing a formal definition of end-point projection for MPSTs
that can handle cryptographic operators in an appropriate way.

Accountability, Resilience and Recoverability

State-of-the-art: These three topic complexes are not on a critical path for TaRDIS in the
sense that they are nice-to-have, but not essential. Accountability is a set of mechanisms for
giving incentives for participants to behave honestly where this cannot be directly enforced
(Alhadeff et al., 2012; Kunnemann et al., 2019; Küsters et al., 2010; Mödersheim & Cuellar,
2021), e.g., a certificate server could maliciously issue certificates for people who are not
eligible in exchange for a bribe. However, accountability can in this case ensure that the server
runs a risk of being detected and penalised for such illegal behaviour. Resilience is about
mechanisms to ensure that even after an attacker has compromised some components of a
system, other components continue to function and ensure at least their most basic security
goals (Jacomme & Kremer, 2018). Recoverability is about the ability of a system to recover to
a secure state after a compromise (Cohn-Gordon et al., 2016).

Beyond state-of-the-art: All three topics are with a bit of manual specification work in the
realm of what protocol verification tools can already analyse. This can however be a bit of
tedious work, e.g., generating many scenarios with scripts and feeding them into verification
tools. Time permitting, we plan to investigate whether we can integrate easier ways to specify
the three properties for given systems, and improve verification methods for these
specifications, avoiding that a large set of scenarios has to be enumerated and checked but
can rather be handled symbolically.

Information Flow Control

State-of-the-art: Information flow control a technique that relies on the good behaviour of the
system regarding external agents and effectively maintains confidentiality and information
integrity withing a system, preventing programming errors from introducing information leaks
and consumption of untrusted data. Information flow control goes back to the seminal work of
Denning (Denning, 1976), where she proposes a fixed lattice model, base for type systems
(Volpano et al., 1996), monitors (Austin & Flanagan, 2009), and hybrid approaches (E.
Geraldo, Santos, & Costa~Seco, 2021; Toro et al., 2018) aiming to ensure data confidentiality.
Some approaches trade the fixed-lattice model for more flexible mechanisms such as the
decentralized label model (Myers & Liskov, 2000) or value-dependent security lattices (E.

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 31 of 57 © 2023-2025 TaRDIS Consortium

Geraldo, 2022; E. M. P. C. R. Geraldo, 2018; Lourenço & Caires, 2015). Independently of the
means of enforcement, information flow control is used in many programming languages like
Java (E. Geraldo & Costa Seco, 2019; Myers & Liskov, 2000; Snelting et al., 2014), JavaScript
(Santos et al., 2018), and OCaml (Simonet, 2003), or tools like JOANA (Snelting et al., 2014),
FlowDroid (Arzt et al., 2014), TaintDroid (Enck et al., 2014), and Snitch (E. Geraldo, Santos,
& Costa~Seco, 2021).

However, the digitalisation of even-based languages calls for high-level treatments of
information flow control that acknowledge the workflows employed (van der Aalst et al., 2017).
Some formalisms support access control, but few allow for information flow control. A notable
exception is the analysis of non-interference in Petri Nets (Busi & Gorrieri, 2009), applied to
business processes in (Accorsi Rafael and Lehmann, 2012; Lehmann & Fahland, 2012). There
is also work applying the declarative specification and verification of information flow control in
process calculi; some consider only the control flow and the sequence of messages (Abadi et
al., 1999; Honda et al., 2000; Kobayashi, 2005), while others integrate imperative languages
in the calculus, expanding the verification scope (Honda et al., 2000).

The formal connection between processes and data is a well-known problem addressed by
different approaches in the literature (Costa Seco et al., 2018; Galrinho et al., 2021; van der
Aalst et al., 2017). The process-data connection may help overcome one of the disadvantages
of traditional information flow control approaches for imperative languages. Existing tools can
be too strict, making it too difficult to adapt to real-world scenarios. In this context, we highlight
the contribution of data-dependent information flow control (Lourenço & Caires, 2015), which
is a promising approach to defining security compartments that capture the essence of realistic
software.

Beyond state-of-the-art: We will push the state-of-the-art in applying information flow control
in event-based structures by studying static analysis techniques that prevent erroneous
situations of confidentiality and integrity of data. We will further extend that into developing
hybrid approaches in this context, preventing all errors with the most confidence and precision
possible. The use cases of the project are rich test beds for such techniques mixing personal
information with sensitive computations.

4.2.4 Verification of Federated Learning Orchestration

Formal specification of FL frameworks

State of the art: Originally, federated learning (FL) was introduced by McMahan et al.
(McMahan et al., 2017) as a decentralised approach to model learning that leaves the training
data distributed on the mobile devices and learns a shared model by aggregating locally
computed updates. Besides preserving local data privacy, FL is robust to the unbalanced and
non-independent and identically distributed (non-IID) data distributions, and it reduces required
communication rounds by 10–100x as compared to the synchronized stochastic gradient
descent algorithm. Inspired by (McMahan et al., 2017), Bonawitz et al. (Bonawitz et al., 2017)
introduced an efficient secure aggregation protocol for federated learning, and Konecny et al.
(Konečný et al., 2017) presented algorithms for further decreasing communication costs. More
recently, Bonawitz et al. (Bonawitz et al., 2022) and Perino et al. (Perino et al., 2022) focused
on data privacy.

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 32 of 57 © 2023-2025 TaRDIS Consortium

Nowadays, there are many FL frameworks. The most prominent such as TensorFlow
Federated (TFF) (McMahan, n.d.), BlueFog (Ying, Yuan, Chen, et al., 2021; Ying, Yuan, Hu,
et al., 2021) and Flower (Beutel et al., 2020) are well supported and accepted and they work
well in the cloud-edge continuum. However, they are not deployable to edge only, they are not
supported on OS Windows, and they have numerous dependencies that make their installation
far from trivial.

Recently, in 2021, Kholod et al. (Kholod et al., 2021) made a comparative review and analysis
of open-source FL frameworks for IoT, covering TensorFlow Federated (TFF) from Google Inc
(TensorFlow Federated: Machine Learning on Decentralized Data, n.d.), Federated AI
Technology Enabler (FATE) from Webank’s AI department (An Industrial Grade Federated

Learning Framework, n.d.), Paddle Federated Learning (PFL) from Baidu (An Open-Source

Deep Learning Platform Originated from Industrial Practice, n.d.), PySyft from the open
community OpenMined (A World Where Every Good Question Is Answered, n.d.), and
Federated Learning and Differential Privacy (FL&DP) framework from Sherpa.AI (Privacy-

Preserving Artificial Intelligence to Advance Humanity, n.d.). They found out that application of
these frameworks in the IoTs environment is almost impossible.

Therefore, developing a FL framework targeting smart IoTs in edge systems is still an open
challenge. More recently, in 2023, Popovic et al. proposed their solution to that challenge called
Python Testbed for Federated Learning Algorithms (PTB-FLA) (Popovic et al., 2023). The work
has been carried out within the TaRDIS project task 5.1.

PTB-FLA was developed with the primary intention to be used as a FL framework for
developing federated learning algorithms (FLAs), or more precisely as a runtime environment
for FLAs. The word “testbed” in the name PTB-FLA that might be misleading was selected by
ML & AI developers in TaRDIS project because they see PTB-FLA as an “algorithmic” testbed
where they can plugin and test their FLAs. Note that PTB-FLA is neither a system testbed,
such as the one that was used for testing the system based on PySyft in (Cheng Shen and
Wanli Xue, 2021), nor a complete system such as CoLearn (Feraudo et al., 2020) and FedIoT
(Zhang et al., 2021) (for more elaborated comparison with CoLearn and FedIoT see Section
I.A in (Popovic et al., 2023)).

PTB-FLA is written in pure Python to keep the application footprint small so to fit to IoTs, and
to keep installation as simple as possible (with no external dependencies). PTB-FLA supports
both centralised and decentralised FLAs. The former is as defined in (McMahan et al., 2017),
whereas the latter are generalised such that each process (or node) alternatively takes server
and client roles from (McMahan et al., 2017) or more precisely, it switches roles from server to
client and back to server. We describe the one-shot FLA execution of both algorithms.

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 33 of 57 © 2023-2025 TaRDIS Consortium

Figure 3: The generic centralised one-shot FLA execution.

The generic centralised one-shot FLA has three phases, see Figure 3 (here is the server
and , are the clients). In the first phase, the server broadcasts its local data to
the clients, which in turn call their callback function to get the update data and store the update
data locally. In the second phase, the server receives the update data from all the clients (in
any order, caused by arbitrary delays), and in the third phase, the server calls its callback
function to get its update data (i.e., aggregated data) and stores it locally. Finally, all the
instances return their new local data as their results.

Unlike the generic centralised FLA that uses the single field messages carrying data, the
generic decentralised FLA uses the three field messages carrying: the messages sequence
number (i.e., the phase number), the message source address (i.e., the source instance
network address), and the data (local or update).

Figure 4: The generic decentralised one-shot FLA execution.

The generic decentralised one-shot FLA has three phases, see Figure 4. In the first phase,
each instance acts as a server, and it sends its local data to all its neighbours. These messages

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 34 of 57 © 2023-2025 TaRDIS Consortium

have the sequence number 1, each instance sends such messages and is also the

destination for such messages.

In the second phase, each instance acts as a client, and it may receive either a message with
the sequence numbers or . In the latter case, it just stores it in a buffer for later processing
in the third phase, whereas in the former case, it calls the client callback and sends the update
data in the reply to the message source. Note that during the second phase, the instance does
not update its local data, it just passes the update data it got from the client callback function.
Since messages are sent asynchronously, they may be received in any order. Figure 4 shows
a scenario where the instance receives the messages in the messages sequence

, which is out of the phase order, whereas the instances and receive the
messages in the sequence , which is in the phase order. However, by using the
abovementioned buffering, the instance postpones processing of the phase messages until
the third phase. The second phase is completed after the instance received and processed all

 messages. In the third phase, each instance again acts as a server, and it calls the
server callback function to get its update data (e.g., aggregated data) and stores it locally.
Finally, all the instances return their new local data as their results.

PTB-FLA enforces a restricted programming model, where a developer writes a single
application program, which is later instantiated and launched by the PTB-FLA launcher as a
set of independent processes, and within their application program, a developer only writes
callback functions for the client and the server roles, which are then called by the generic
federated learning algorithms hidden inside PTB-FLA.

Correct orchestration is one of the main challenges of FL frameworks nonetheless it has not
yet received proper attention. There is an urging demand for formal specification and
verification of FL frameworks. So far, PTB-FLA usage has been illustrated and validated by
three simple examples in (Popovic et al., 2023). PTB-FLA has not been formally verified.

Beyond the state of the art: Within WP4, Task 4.4, we have formally verified the correctness
of two generic FL algorithms, a centralised and a decentralised one using the Communicating
Sequential Processes calculus (CSP) and the Process Analysis Toolkit (PAT) model checker.
All details are presented in (Prokic et al., 2023).

The work has been done in two phases:

1) In the first phase, presented below, we construct CSP models of the generic centralised
and decentralised FLAs as faithful representations of the real Python code. We
construct these models in a bottom-up fashion in two steps. In the first step, we
construct processes corresponding to generic FL algorithm instances, and in the
second step, we construct the system model as an asynchronous interleaving of n FL
algorithm instances.

2) In the second phase, presented further in this document in Section 4.1.8, we formally
verify the CSP models constructed in the first phase in two steps. In the first step, we
formulate desired system properties, namely deadlock freeness (safety property) and
successful FLA termination (liveness property). We formulate the latter property in two
equivalent forms (reachability statement and always-eventually LTL formula). In the

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 35 of 57 © 2023-2025 TaRDIS Consortium

second step, we use PAT to automatically prove formulated verification statements
(Sun et al., 2009).

The CSP models are constructed bottom-up as a faithful representation of the real Python
code and they are automatically checked top-down by PAT.

To the best of our knowledge, this is the first result that formally verifies decentralised FLAs.

We present two models: one for the centralised algorithm and another one for the decentralised
algorithm.

Modeling centralised algorithm

Figure 5 shows a CSP model for our centralised algorithm. Lines 2-3 define number of nodes
(NoNodes) (indexed with 0, 1, 2, . . .) with the server (FlSrvId) having the largest index, and
other nodes being clients. We remark we could set here the index of the server node with the
smallest index, but this would in fact make our model less intuitive because of the channel
manipulation (as explained below). Lines 4-5 define arrays of local data ldata and private data
pdata - one per each node. The communication channels are defined in lines 8-9. The array
of channels server2client - one per each client (hence, NoNodes−1 channels) are used for the
server broadcast of their local data to the clients (one channel per client). Notice that the
indexes of array elements are generated starting with 0, hence the channel index indicates the
index of the client node. Since we consider one-shot algorithm the server sends their local data
only once, hence the channels are specified to have FIFO buffers of size 1.

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 36 of 57 © 2023-2025 TaRDIS Consortium

Figure 5: CSP model for centralised algorithm.

Channel clients2server is used in the second phase of our algorithm, i.e. for clients replying
to the server with the update data. The FIFO size of this channel is NoNodes−1, since all

clients reply with a single update.

Lines 11-16 define a generic node as a CSP process with parameters of the number of nodes,
identification of the node, index of the server, their local and private data. We remark that
parameters sfun, cfun, and noIters, also present in fl_centralised, were considered out of the

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 37 of 57 © 2023-2025 TaRDIS Consortium

scope for this model. Based on the node index the process proceeds as the server node
CeServer or as one of the client nodes CeClient.

The server node is modeled in lines 18-22. The process first checks if it is terminated: if not it
performs the broadcasting of the local data via CeBroadcastMsg, then proceeds to phase 2
by receiving updates via CeRcvMsgs. The successful termination is modeled with Skip. The
broadcasting of server’s local data CeBroadcastMsg is defined in lines 24-30. The server
sends ldata on channels server2clients[id] (if id is not their own index), and then recursively
calls itself with index increased by 1 - if the index is less than noNodes−1. Since CeServer
passes id to CeBroadcastMsg to be 0, the server will send the local data to all the clients
exactly once. Once the broadcast is done, the server starts receiving clients’ updates on
channel clients2server as defined with CeRcvMsgs in lines 32-35.

The client process is defined with CeClient in lines 37-40. The client with index nodeId first
receives server’s local data on channel server2client[nodeId], and then replies updated
server’s local data with its own local data (here for simplicity modeled with addition) on channel
clients2server, after which client process successfully terminates.

The system consisting of NoNodes−1 clients and a single server is then modeled as the

interleaving of the FlCentralised processes (lines 42-48), since all processes but one indexed
FlSrvId are instantiated as clients (and the one indexed FlSrvId is instantiated as a server).

Modelling decentralised algorithm

The CSP model for our decentralised algorithm is given in Figure 6. Albeit more complex than
the centralised one, the decentralised algorithm yields a slightly simpler CSP model. The
reason is that all nodes in the system have the same behaviour. In phase 1 all nodes behave
as servers broadcasting their local data to all other nodes, which in turn update the data and
return an answer in phase 2. All the nodes receive messages from all other nodes as they
arrive, but first process the messages from phase 1 and only then deals with the messages
from the phase 2. We model this behaviour with assigning two channels to each process (i.e.
node). One channel is for receiving messages from other processes, called tonode, with buffer
of size 2*(NoNodes-1) (line 7), since the node will receive messages from all other nodes from
both phases. The other channel assigned to node, called buffer (line 8), serves only for storing
messages from the second phase while all messages from the first phase are processed - later
in phase 3 the same node will read those messages. Hence, the buffer size of these channels
are NoNodes-1.

The node processes are defined with FlDecentralised in lines 10-15. Process first broadcasts
their local data with DeBroadcastMsg (defined in lines 17-23) - which behaves in the same
way as CeBroadcastMsg in the centralised algorithm, except that the sent messages now
contain not only field for local data of the node, but also fields marking the phase (here 1) and
the node’s index (that the receiving node uses for the reply in phase 2).

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 38 of 57 © 2023-2025 TaRDIS Consortium

Figure 6: CSP model for decentralised algorithm.

The node then proceeds with receiving messages from all other nodes with DeRcvMsgs, and
finally (phase 3) process the messages from the second phase with DeRcvMsgs2.

DeRcvMsgs is given in lines 25-35. Here we deviate from the centralised algorithm: node
receives all messages from both phases from the other nodes and then performs an analysis
on the phase of the received message. If the phase is 1, the node replies updated data to from

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 39 of 57 © 2023-2025 TaRDIS Consortium

they received message in the first place, marking the phase of the message 2. If, on the other
hand, the phase is 2, the node stores the message to their own channel buffer[nodeId]. Once
the node process all messages from phase 1 (and buffers all messages from phase 2),
DeRcvMsgs2 (lines 37-41) is used to read from the buffer[nodeId], which behaves in the
same way as CeRvcMsgs from the centralised algorithm.

The system of NoNodes nodes is finally modeled as the interleaving of the FlDecentralised
processes in lines 43-48.

Next steps: Multiparty Asynchronous Session Types (MPST) were tailored to describe
distributed protocols relying on asynchronous communications. Hu and Yoshida extended
MPST in (Hu & Yoshida, 2017) with explicit connection actions to support protocols with
optional and dynamic participants. These extended MPST enabled modelling and verification
of some protocols in cloud-edge continuum in (Simic et al., 2021). However, we could not use
these extended MPST to model the generic centralised and decentralised FLAs, because we
could not express arbitrary order of message arrivals that take place at an FLA instance.

The design of robust protocols for coordination of peer-to-peer systems is difficult because it
is hard to specify and reason about their global behaviour. Recently, (Kuhn et al., 2023)
presented an approach where a so-called swarm protocol is a global system specification,
whereas swarm protocol projections to machines are local specifications of peers. They claim
that swarms are dead- lock free, but liveness is not guaranteed in their theory. We find this
approach interesting and in our future work we plan to investigate whether it would be feasible
for our generic FLAs.

At present, we identify some of the differentiating points between (Kuhn et al., 2023) and our
work: (i) in their approach communication of peers is conducted through a shared log instead
of point-to-point message passing; (ii) they model peers using finite state automata, while we
use (CSP) processes; (iii) they model protocols in the style of MPST via top-down approach
(projecting global type onto peers to obtain local type specification) while we only write local
processes specifications, that we ensemble together to obtain global protocol behaviour; (iv)
they use TypeScript language and develop tools to check protocol conformance at runtime
through equivalence testing, whereas our protocols are written in Python language, modelled
in CSP, and we use PAT to prove deadlock freeness and liveness.

We plan further to combine the two approaches in order to work towards the verification of
properties of the TaRDIS initial toolset of WP6 along with requirements of WP2 and
developments of WP3 and WP5.

Formal Verification of Distributed AI

State-of-the-art: The most prominent FL frameworks include Flower (Beutel et al., 2020) (for
centralised federated learning) and BlueFog (Ying, Yuan, Hu, et al., 2021) (for fully distributed
learning), promising scalable decentralised ML workloads on heterogeneous edge devices.
More recently, as part of the TaRDIS project, (Popovic et al., 2023) proposed a framework
called Python Testbed for Federated Learning Algorithms (PTB-FLA). However, none of the
above frameworks have been utilizing methods for formal verification, lacking trustworthy
methodologies that can provide safe and reliable systems.

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 40 of 57 © 2023-2025 TaRDIS Consortium

Beyond state-of-the-art: As a first step towards formal verification of the FL algorithms we
conducted an investigation on the formal verification of the two generic FL algorithms
introduced in (Popovic et al., 2023) (and presented above in this document). To achieve the
formal verification, we first modeled the protocols of the two algorithms using the CSP process
algebra (Hoare, 1985) (the CSP models are also given above in this document). The
correctness of the CSP models is automatically checked by PAT, which supports the system
analysis in two ways: simulation and model checker. We have used the latter one.

The correctness of the centralised and decetralised algorithms is verified by proving the
deadlock freeness (safety property) and successful termination (liveness property). The
properties of algorithms are stated in the form of queries, called assertions, which are checked
by PAT (Sun et al., 2009).

Figure 7: Verifying centralised algorithm.

The assertions that formally verify the correctness of the centralised algorithm are shown in
Figure 7. The assertion given in line 5 of Figure 7 claims that the centralised algorithm is
deadlock-free. PAT model checker performs Depth-First-Search or Breath-First-Search
algorithm to check if the assertion is true. It explores unvisited states until a non-terminated
state with no further move called a deadlock state is found or all states have been visited.

The assertion given in line 7 of Figure 7 claims that the centralised algorithm reaches a
terminated state. This assertion is checked by performing Depth-First-Search algorithm. PAT
model checker repeatedly explores all unvisited states until it finds a state at which the
condition Terminated is satisfied or it visits all the states. The condition Terminated is a
proposition defined as a global definition (line 6 in Figure 7).

PAT supports the full syntax of the linear temporal logic (LCL), which is used in the last
assertion of Figure 7 that claims our centralised algorithm satisfies formula []<> Terminated.
The modal operator [] reads as always and the operator <> reads as eventually, so the
statement asserts our centralised algorithm always eventually reaches the terminated state.

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 41 of 57 © 2023-2025 TaRDIS Consortium

Figure 8: Verifying decentralised algorithm.

The proof of the correctness of our decentralised algorithm is given in Figure 8 and follows the
same explanations given for the centralised one.

Next steps: We will build upon the research developed in (Prokic et al., 2023) to design a
framework for the safe orchestration of decentralised swarm ML. Further developments of
TaRDIS will enable the coordination of the ML primitives ensuring that each primitive has
access to the data that it requires. The framework will ensure the safe execution of machine
learning actions at collaborative smart edge-nodes. Finally, we will integrate the analyses
developed across WP4 with the AI-based optimisation developed in WP5. Resource
orchestration will be made transparent and hence more trustworthy by exploiting transparent
and secure data management from WP6 that include swarm ML/DL models and models for
reinforcement learning(Södergård et al., 2020). We will investigate local model explainability
based on LIME (Ribeiro et al., 2016) and local surrogate decision trees to be linked with
allocated resource schemes to increase explainability of decisions on resource allocations to
humans.

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 42 of 57 © 2023-2025 TaRDIS Consortium

5. EXPECTED RESULTS FOR USE CASES

In this section, we demonstrate the desirable models and properties associated with use cases
that necessitate specification and verification.

5.1 FAILURE MODELS

• Actyx, GMV
1. Devices can be inaccessible for arbitrary but bounded periods of time; during this time

local computation on the device may or may not be possible (i.e., device can lose
network connectivity or battery, application can be stopped and restarted, …).

2. Devices can be destroyed —fail-stop mode.

Byzantine faults are not a concern at this stage because all devices are centrally managed by
a single entity, and potential middleware bugs are not being considered for now.

• EDP

1. Grid: A failure in the connectivity of prosumers to the community infrastructures can
disrupt the system.

o Assumption regarding overall system architecture: there is a central entity
(MainProvider, e.g., EDP) that owns a trusted, known, and centralised
infrastructure. This infrastructure is assumed to have high availability
(99.999%).

2. Processes: Failures to provide energy can result from not meeting consumption
requests and energy offer timeframes. Another failure scenario can occur if there
is a delayed response to a system failure in providing a failback power source to all
requests.

3. Optimization: The system should optimize the matching between producers and
consumers within the energy community, resorting to other communities or the grid
only when there are no local alternatives available for production, consumption, or
storage.

• Telefónica

A core part of Federated-Learning-as-a-Service (FLaaS) is privacy. Failure to protect
participant data can lead to privacy breaches and other consequences. Proper privacy-
preserving techniques should be implemented to prevent data exposure. Hence,
Telefónica needs to account for these failure models:

1. Network: FLaaS relies on communication between the server and participating
devices or clients. Communication failures, including network outages, delays, and
packet loss, can disrupt the learning process.

2. Data: In FLaaS, data distribution across participants may be imbalanced, leading
to biased models. Addressing data imbalance challenges and ensuring that the
model remains fair, and representative is essential.

3. Model: The aggregation process of model updates from participants can be
inefficient or error-prone, affecting the quality of the global model. Implementing
efficient and robust aggregation algorithms is crucial.

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 43 of 57 © 2023-2025 TaRDIS Consortium

4. Users and nodes: Participants in FLaaS may drop out due to various reasons, such
as device unavailability, network issues, or user preferences. Managing participant
dropouts without compromising the model's performance is a challenge. Further,
nodes (in the hierarchy) might exhaust their computational, memory, or bandwidth
resources, affecting their ability to participate effectively.

5.2 DESIRABLE LIVENESS PROPERTIES

• Actyx

1. A workflow always terminates, either with an error condition or by reaching a
terminal state; this assumes that non-modelled state value computations terminate,
and it assumes that we limit workflow recursion using established techniques such
as gas/fuel consumption or timeouts.

2. Failures (incl. running out of gas/fuel) are handled by other workflows, e.g., using
an escalation or supervision scheme, also allowing compensating actions or
recovery to restore a valid overall system state.

3. All non-failing participants in a workflow reach eventual consensus on the sequence
of states traversed by the execution of this workflow; some participants may lump
together workflow states if they don’t care about their distinction.

• EDP

1. There is always a way of satisfying a consumption or production request.

• GMV
1. Navigation filter shall eventually converge.

• Telefónica
1. Participants are allowed to join or leave the system dynamically.
2. Feedback mechanisms and incentives should be implemented in FLaaS to

motivate participants for continued engagement.
3. Ensuring the absence (or at least minimising) data imbalance can be tackled with

quality (quantitative) models for data integrity (as a balanced aggregation of parts).

5.3 DESIRABLE SAFETY PROPERTIES

• Actyx

1. Deadlock-freedom: no participant can get stuck; if the local event log puts the local
view of the workflow into a state where the participant may act (i.e., publish events)
then it can do so, which will advance the local workflow view. Together with
termination (liveness property), this implies lock- and starvation-freedom.

2. Causality captured in the workflow is maintained in each participant’s local view
(e.g., “this event can only be seen after that other event has been seen”); this allows
real-world safety properties like “the robot can only take the workpiece after it has
been placed on the shelf”.

3. The programmer can formulate safety constraints like “event A never applies before
event B”; since we aim for dynamic systems, we start scoping these properties to
each workflow instance — we regard them as isolated even though they can in
principle interfere through overlapping event subscriptions

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 44 of 57 © 2023-2025 TaRDIS Consortium

4. Conflict-detection: deadlock-freedom in this setting implies the possibility of
divergent event histories which will be reconciled as events are disseminated (i.e.,
undoing invalidated state computations).

5. Each participant can detect when reconciliation has invalidated any of its prior
actions (i.e., external effects incl. event emission); this allows compensating actions
to be taken.

6. Compensating event emissions shall not break the other properties listed above.

• EDP
1. Consumption and production requests are always matched in a compatible way.
2. The data provided by the devices to the community/grid is used in accordance with

specified guidelines.
• GMV

1. Deadlock-freedom: entities become available for synchronous communication in
predetermined time slots as pairs. However, if only a single entity becomes
available, it may result in blocking, potentially leading to a deadlock. In simpler
terms, the satellite control code must be designed to prevent the occurrence of
deadlocks.

2. Navigation accuracy shall be at least X meters.

• Telefónica
1. Concurrent updates from multiple participants can be handled.
2. Fault tolerance: resilient to failures, including server crashes, communication

interruptions, or participant dropouts.
3. Presence of malicious: compromised participants can send incorrect or malicious

updates to the centre server, affecting the integrity of the global model. Mechanisms
are employed to detect and mitigate the impact of Byzantine participants.

4. Efficient and robust aggregation algorithms require good sound concurrency control
(approaches to control data races are key for consistency/integrity)

5.4 DESIRABLE SECURITY AND PRIVACY PROPERTIES

• Actyx

1. All communication between participants (i.e., event generation, and receiving an
event in a callback function) must be encrypted such that both confidentiality and
injective agreement (integrity and authentication, protected from replay) on the
transmitted events is ensured. This will be verified for the transmission protocols
underlying the TaRDIS API that is handling the events exchange in a heterogenous
swarm.

2. The correct deployment of the channels by the application must be verified: the
communication may need to be separated w.r.t. a setup of subscriptions for certain
event types. Moreover, no communication should be performed outside the
TaRDIS event-based model, or, if it is deemed necessary, verified that this cannot
leak secrets or import untrusted information.

3. To an external observed (non-participant) it must not be observable which events
are taking place, including what type of event. We may assume here that an
attacker cannot perform a precise timing/traffic analysis (which to protect against

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 45 of 57 © 2023-2025 TaRDIS Consortium

would require dummy events and batching of messages that may not be practically
feasible).

4. Any protocols that are deployed for updating cryptographic material (e.g., creating
a new key when a participant leaves a group) should ensure security against
outsiders and malicious insiders (e.g., participants who shall leave a group but try
to manipulate the update key exchange such that they continue to have access to
the group communication).

5. We will also investigate practically feasible ways to allow the above security and
privacy in presence of malicious participants, by either using further cryptographic
means (e.g., restricting access to certain parts of the communication, or using zero-
knowledge proofs) as well as non-cryptographic means such as accountability.

6. We intend to leverage ML for anomaly detection in event logs, with federated
learning being a potential approach.

• EDP

1. Only the model parameters of distributed ML in a heterogenous swarm can be sent
by the clients and servers. The actual data should always remain private to the
clients and servers. This will be verified statically. These properties contribute to
privacy protection in the TaRDIS model.

2. All communication between participants must ensure confidentiality and injective
agreement on the transmitted events is ensured or any other communication
channels that are employed. This will be verified for the transmission protocols
underlying the TaRDIS API that is handling the events exchange in a heterogenous
swarm.

3. The correct deployment of the channels by the application must be verified: each
generation of an event (or sending of a message) must only be visible to the
participants that are allowed to see it, and vice-versa events (or received
messages) can only be reacted upon when it comes from a participant who is
authorized to influence the respective data.

4. To an external observer (non-participant) it must not be observable which events
are taking place, including what type of event. We may assume here that an
attacker cannot perform a precise timing/traffic analysis (which to protect against
would require dummy events and batching of messages that may not be practically
feasible).

5. The observability requirement explicitly includes unlinkability goals (as far as
feasible): it should be impossible (or very hard) to obtain profiles of participants
linking their actions together. This may involve the use of special zero-knowledge
primitives in the implementation of communication channels and protocols.

6. Any protocols that are deployed for updating cryptographic material (e.g., creating
a new key when a participant leaves a group) should ensure security against
outsiders and malicious insiders.

7. Contracts and agreements between participants should be accountable, i.e., in
case of a breach of an agreement, enough evidence is available to prove the breach
to a third party (e.g., in court or to an arbitration entity).

• GMV

1. All communication between participants must ensure confidentiality and injective
agreement on the transmitted events is ensured or any other communication
channels that are employed. This will be verified for the transmission protocols

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 46 of 57 © 2023-2025 TaRDIS Consortium

underlying the TaRDIS API that is handling the events exchange in a heterogenous
swarm.

2. The correct deployment of the channels by the application must be verified: each
generation of an event (or sending of a message) must only be visible to the
participants that are allowed to see it, and vice-versa events (or received
messages) can only be reacted upon when it comes from a participant who is
authorized to influence the respective data.

3. Any protocols that are deployed for updating cryptographic material (e.g., creating
a new key when a participant leaves a group) should ensure security against
outsiders and malicious insiders.

4. The satellites share their models' coefficients, which are used for orbit propagation,
and enhance their individual estimates through federated learning.

• Telefónica

1. Only the model parameters of FL can be sent by the clients and servers. The actual
data should always remain private to the clients and servers. This will be verified
statically. These properties contribute to privacy protection in the TaRDIS model.

2. Besides the privacy properties on the application/machine learning level, all
communication between participants must ensure both confidentiality and injective
agreement on any communication channel (including the communication of
events). This shall be a verified property of the transmission protocols underlying
the TaRDIS API (or whatever communication channels shall be used). These
properties shall also hold amongst honest participants when some participants are
dishonest (e.g., compromised or malicious users).

3. The correct deployment of the channels by the application must be verified,
including that guessable, known or repeated messages communicated by the
application can impact the goals.

4. Any protocols that are deployed for updating cryptographic material (e.g., creating
a new key when a participant leaves a group) must ensure that the updated key is
secure, possibly also removing access to an attacker who had successfully hacked
into the system.

5.5 DESIRABLE DATA CONVERGENCE AND INTEGRITY PROPERTIES

Actyx's liveness property 3 also doubles as a data convergence property, as “eventual
consensus on the sequence of states traversed by the execution of this workflow” implies
convergence on the system overall state (thus on data). It also implies data integrity as no two
participants that can change the state won’t eventually reach consensus on the sequence of
states traversed by the execution of the workflow. Safety properties 2 and 4 of Actyx are critical
to ensure this liveness property.

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 47 of 57 © 2023-2025 TaRDIS Consortium

6. CONCLUSIONS

TaRDIS development environment's primary goal is to assist developers in building correct
systems through automatic analysis of interactions between various components within a
distributed system. This approach ensures that applications are inherently designed for
correctness, taking into account both application invariants and the specifics of the execution
environment.

As a first step to address these challenges, we categorise the properties regarding to TaRDIS
use cases that require analysis and verification. Additionally, we delve into both established
and sophisticated verification techniques that will be utilised to validate these properties.

The key contributions of this report include identifying the challenges arising from intelligent
swarms as well as use cases related to verification and analysis, categorising the properties
that will undergo in-depth analysis in the upcoming WP4 deliverables, organising them based
on the specific tasks to which they are assigned, classifying the existing verification techniques
and discussing how TaRDIS will go beyond the state-of-the-art, and summarizing the desirable
models and properties that are specifically relevant to the TaRDIS use cases. We consolidate
these insights and apply them to TaRDIS models to ensure that they satisfy the desirable
security, data integrity, AI coordination, and interaction properties, as aligned with the specific
TaRDIS use cases and requirements.

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 48 of 57 © 2023-2025 TaRDIS Consortium

7. BIBLIOGRAPHY

A world where every good question is answered. (n.d.). https://www.openmined.org

Abadi, M., Banerjee, A., Heintze, N., & Riecke, J. G. (1999). A Core Calculus of Dependency.
In A. W. Appel & A. Aiken (Eds.), POPL ’99, Proceedings of the 26th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, San Antonio, TX, USA,

January 20-22, 1999 (pp. 147–160). ACM. https://doi.org/10.1145/292540.292555

Accorsi Rafael and Lehmann, A. (2012). Automatic Information Flow Analysis of Business
Process Models. In A. and K. E. Barros Alistair and Gal (Ed.), Business Process

Management (pp. 172–187). Springer Berlin Heidelberg.

Alhadeff, J., Van Alsenoy, B., & Dumortier, J. (2012). The accountability principle in data
protection regulation: Origin, development and future directions. In Managing Privacy

Through Accountability. https://doi.org/10.1057/9781137032225_4

An Industrial Grade Federated Learning Framework. (n.d.). https://fate.fedai.org/

An Open-Source Deep Learning Platform Originated from Industrial Practice. (n.d.).
https://www.paddlepaddle.org.cn/en

Ancona, D., Bono, V., Bravetti, M., Campos, J., Castagna, G., Deniélou, P.-M., Gay, S. J.,
Gesbert, N., Giachino, E., Hu, R., Johnsen, E. B., Martins, F., Mascardi, V., Montesi, F.,
Neykova, R., Ng, N., Padovani, L., Vasconcelos, V. T., & Yoshida, N. (2016). Behavioral
Types in Programming Languages. Found. Trends Program. Lang., 3(2–3), 95–230.
https://doi.org/10.1561/2500000031

Arapinis, M., Ritter, E., & Ryan, M. D. (2011). StatVerif: Verification of stateful processes.
Proceedings - IEEE Computer Security Foundations Symposium.
https://doi.org/10.1109/CSF.2011.10

Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le Traon, Y., Octeau, D., &
McDaniel, P. (2014). FlowDroid: Precise Context, Flow, Field, Object-Sensitive and
Lifecycle-Aware Taint Analysis for Android Apps. Proceedings of the 35th ACM SIGPLAN

Conference on Programming Language Design and Implementation, 259–269.
https://doi.org/10.1145/2594291.2594299

Austin, T. H., & Flanagan, C. (2009). Efficient Purely-Dynamic Information Flow Analysis.
Proceedings of the ACM SIGPLAN Fourth Workshop on Programming Languages and

Analysis for Security, 113–124. https://doi.org/10.1145/1554339.1554353

Barbanera, F., Dezani-Ciancaglini, M., Lanese, I., & Tuosto, E. (2021). Composition and
decomposition of multiparty sessions. J. Log. Algebraic Methods Program., 119, 100620.
https://doi.org/10.1016/j.jlamp.2020.100620

Barwell, A. D., Hou, P., Yoshida, N., & Zhou, F. (2023). Designing Asynchronous Multiparty
Protocols with Crash-Stop Failures. In K. Ali & G. Salvaneschi (Eds.), 37th European

Conference on Object-Oriented Programming (ECOOP 2023) (Vol. 263, pp. 1:1–1:30).

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 49 of 57 © 2023-2025 TaRDIS Consortium

Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
https://doi.org/10.4230/LIPIcs.ECOOP.2023.1

Barwell, A. D., Scalas, A., Yoshida, N., & Zhou, F. (2022). Generalised Multiparty Session
Types with Crash-Stop Failures. In B. Klin, S. Lasota, & A. Muscholl (Eds.), 33rd

International Conference on Concurrency Theory, CONCUR 2022, September 12-16,

2022, Warsaw, Poland (Vol. 243, pp. 35:1–35:25). Schloss Dagstuhl - Leibniz-Zentrum
für Informatik. https://doi.org/10.4230/LIPIcs.CONCUR.2022.35

Bella, G. (2007). Formal Correctness of Security Protocols. Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-540-68136-6

Beutel, D. J., Topal, T., Mathur, A., Qiu, X., Parcollet, T., & Lane, N. D. (2020). Flower: A
Friendly Federated Learning Research Framework. CoRR, abs/2007.14390.
https://arxiv.org/abs/2007.14390

Blanchet, B. (2016). Modeling and Verifying Security Protocols with the Applied Pi Calculus
and ProVerif. Foundations and Trends® in Privacy and Security, 1(1–2).
https://doi.org/10.1561/3300000004

Blanchet, B., Abadi, M., & Fournet, C. (2008). Automated verification of selected equivalences
for security protocols. Journal of Logic and Algebraic Programming, 75(1).
https://doi.org/10.1016/j.jlap.2007.06.002

Bonawitz, K. A., Ivanov, V., Kreuter, B., Marcedone, A., McMahan, H. B., Patel, S., Ramage,
D., Segal, A., & Seth, K. (2017). Practical Secure Aggregation for Privacy-Preserving
Machine Learning. In B. Thuraisingham, D. Evans, T. Malkin, & D. Xu (Eds.), Proceedings

of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS

2017, Dallas, TX, USA, October 30 - November 03, 2017 (pp. 1175–1191). ACM.
https://doi.org/10.1145/3133956.3133982

Bonawitz, K. A., Kairouz, P., McMahan, B., & Ramage, D. (2022). Federated learning and
privacy. Commun. ACM, 65(4), 90–97. https://doi.org/10.1145/3500240

Brun, M. A. Le, & Dardha, O. (2023). MAGπ: Types for Failure-Prone Communication. In T.
Wies (Ed.), Programming Languages and Systems - 32nd European Symposium on

Programming, ESOP 2023, Held as Part of the European Joint Conferences on Theory

and Practice of Software, ETAPS 2023, Paris, France, April 22-27, 2023, Proceedings
(Vol. 13990, pp. 363–391). Springer. https://doi.org/10.1007/978-3-031-30044-8_14

Bruni, A., Carbone, M., Giustolisi, R., Mödersheim, S., & Schürmann, C. (2021). Security
Protocols as Choreographies. In D. Dougherty, J. Meseguer, S. A. Mödersheim, & P. D.
Rowe (Eds.), Protocols, Strands, and Logic - Essays Dedicated to Joshua Guttman on

the Occasion of his 66.66th Birthday (Vol. 13066, pp. 98–111). Springer.
https://doi.org/10.1007/978-3-030-91631-2_5

Bunte Olav and Groote, J. F. and K. J. J. A. and L. M. and N. T. and de V. E. P. and W. W.
and W. A. and W. T. A. C. (2019). The mCRL2 Toolset for Analysing Concurrent Systems.
In L. Vojnar Tomáš and Zhang (Ed.), Tools and Algorithms for the Construction and

Analysis of Systems (pp. 21–39). Springer International Publishing.

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 50 of 57 © 2023-2025 TaRDIS Consortium

Busi, N., & Gorrieri, R. (2009). Structural Non-Interference in Elementary and Trace Nets.
Mathematical. Structures in Comp. Sci., 19(6), 1065–1090.
https://doi.org/10.1017/S0960129509990120

Cachin, C., Guerraoui, R., & Rodrigues, L. E. T. (2011). Introduction to Reliable and Secure

Distributed Programming (2. ed.). Springer. https://doi.org/10.1007/978-3-642-15260-3

Castro-Perez, D., Hu, R., Jongmans, S.-S., Ng, N., & Yoshida, N. (2019). Distributed
programming using role-parametric session types in go: statically-typed endpoint APIs for
dynamically-instantiated communication structures. Proc. ACM Program. Lang.,
3(POPL), 29:1–29:30. https://doi.org/10.1145/3290342

Castro-Perez, D., & Yoshida, N. (2023). Dynamically Updatable Multiparty Session Protocols:
Generating Concurrent Go Code from Unbounded Protocols. In K. Ali & G. Salvaneschi
(Eds.), 37th European Conference on Object-Oriented Programming (ECOOP 2023) (Vol.
263, pp. 6:1–6:30). Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
https://doi.org/10.4230/LIPIcs.ECOOP.2023.6

Cheng Shen and Wanli Xue. (2021). An Experiment Study on Federated Learning Testbed. In
T. and S.-I. C. and J. A. Zhang Yu-Dong and Senjyu (Ed.), Smart Trends in Computing

and Communications (pp. 209–217). Springer Singapore.

Cheval, V., Cortier, V., & Turuani, M. (2018). A little more conversation, a little less action, a
lot more satisfaction: Global states in ProVerif. Proceedings - IEEE Computer Security

Foundations Symposium, 2018-July. https://doi.org/10.1109/CSF.2018.00032

Cheval, V., Kremer, S., & Rakotonirina, I. (2018). DEEPSEC: Deciding Equivalence Properties
in Security Protocols Theory and Practice. Proceedings - IEEE Symposium on Security

and Privacy, 2018-May. https://doi.org/10.1109/SP.2018.00033

Cledou, G., Edixhoven, L., Jongmans, S.-S., & Proença, J. (2022). API Generation for
Multiparty Session Types, Revisited and Revised Using Scala 3. In K. Ali & J. Vitek (Eds.),
36th European Conference on Object-Oriented Programming (ECOOP 2022) (Vol. 222,
pp. 27:1–27:28). Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
https://doi.org/10.4230/LIPIcs.ECOOP.2022.27

Cohn-Gordon, K., Cremers, C., & Garratt, L. (2016). On post-compromise security.
Proceedings - IEEE Computer Security Foundations Symposium, 2016-August.
https://doi.org/10.1109/CSF.2016.19

Cortier, V., Rusinowitch, M., & Zălinescu, E. U. (2007). Relating two standard notions of
secrecy. Logical Methods in Computer Science, 3(3). https://doi.org/10.2168/LMCS-
3(3:2)2007

Costa Seco, J., Debois, S., Hildebrandt, T., & Slaats, T. (2018). RESEDA: Declaring live event-
driven computations as reactive semi-structured data. Proceedings - 2018 IEEE 22nd

International Enterprise Distributed Object Computing Conference, EDOC 2018.
https://doi.org/10.1109/EDOC.2018.00020

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 51 of 57 © 2023-2025 TaRDIS Consortium

Cutner, Z., Yoshida, N., & Vassor, M. (2022). Deadlock-free asynchronous message
reordering in rust with multiparty session types. In J. Lee, K. Agrawal, & M. F. Spear
(Eds.), PPoPP ’22: 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, Seoul, Republic of Korea, April 2 - 6, 2022 (pp. 246–261). ACM.
https://doi.org/10.1145/3503221.3508404

De Porre, K. ; F. C. ; G. B. E. (2023). VeriFx: Correct Replicated Data Types for the Masses.
37th European Conference on Object-Oriented Programming (ECOOP 2023).

Delaune, S., Ryan, M., & Smyth, B. (2008). Automatic verification of privacy properties in the
applied pi calculus. IFIP International Federation for Information Processing, 263.
https://doi.org/10.1007/978-0-387-09428-1_17

Demangeon, R., & Honda, K. (2012). Nested Protocols in Session Types. In M. Koutny & I.
Ulidowski (Eds.), CONCUR 2012 - Concurrency Theory - 23rd International Conference,

CONCUR 2012, Newcastle upon Tyne, UK, September 4-7, 2012. Proceedings (Vol.
7454, pp. 272–286). Springer. https://doi.org/10.1007/978-3-642-32940-1_20

Demangeon, R., Honda, K., Hu, R., Neykova, R., & Yoshida, N. (2015). Practical interruptible
conversations: distributed dynamic verification with multiparty session types and Python.
Formal Methods Syst. Des., 46(3), 197–225. https://doi.org/10.1007/s10703-014-0218-8

Denning, D. E. (1976). A Lattice Model of Secure Information Flow. Communications of the

ACM, 19(5), 236–243. https://doi.org/10.1145/360051.360056

Dolev, D., & Yao, A. C. (1983). On the Security of Public Key Protocols. IEEE Transactions on

Information Theory, 29(2). https://doi.org/10.1109/TIT.1983.1056650

Enck, W., Gilbert, P., Chun, B.-G., Cox, L. P., Jung, J., McDaniel, P., & Sheth, A. N. (2014).
TaintDroid: An Information Flow Tracking System for Real-Time Privacy Monitoring on
Smartphones. Communications of the ACM, 57(3), 99–106.
https://doi.org/10.1145/2494522

Feraudo, A., Yadav, P., Safronov, V., Popescu, D. A., Mortier, R., Wang, S., Bellavista, P., &
Crowcroft, J. (2020). CoLearn: Enabling Federated Learning in MUD-Compliant IoT Edge
Networks. Proceedings of the Third ACM International Workshop on Edge Systems,

Analytics and Networking, 25–30. https://doi.org/10.1145/3378679.3394528

Fournet, L., Mödersheim, S., & Viganò, L. (2023). A Decision Procedure for Alpha-Beta Privacy
for a Bounded Number of Transitions. In 2024 IEEE Computer Security Foundations

Symposium. IEEE Computer Society Press.

Galrinho, L., Seco, J. C., Debois, S., Hildebrandt, T., Norman, H., & Slaats, T. (2021).
ReGraDa: Reactive Graph Data (pp. 188–205). https://doi.org/10.1007/978-3-030-78142-
2_12

Geraldo, E. (2022). SNITCH: A Platform for Information Flow Control. Integrated Formal

Methods: 17th International Conference, IFM 2022, Lugano, Switzerland, June 7–10,

2022, Proceedings, 365–368. https://doi.org/10.1007/978-3-031-07727-2_24

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 52 of 57 © 2023-2025 TaRDIS Consortium

Geraldo, E., & Costa Seco, J. (2019). Snitch: Dynamic dependent information flow analysis for
independent Java bytecode. Electronic Proceedings in Theoretical Computer Science,

EPTCS, 302. https://doi.org/10.4204/EPTCS.302.2

Geraldo, E., Costa Seco, J., & Hildebrandt Thomas. (2023). Data-Dependent Confidentiality in
DCR Graphs. PPDP 2023: 25th International Symposium on Principles and Practice of

Declarative Programming.

Geraldo, E. M. P. C. R. (2018). SNITCH: Dependent Dynamic Information Flow Analysis on

Intermediate Java Code. NOVA School of Science & Technology.

Geraldo, E., Santos, J. F., & Costa Seco, J. (2021). Hybrid Information Flow Control for Low-
Level Code. In R. Calinescu & C. S. Pasareanu (Eds.), Software Engineering and Formal

Methods - 19th International Conference, SEFM 2021, Virtual Event, December 6-10,

2021, Proceedings (Vol. 13085, pp. 141–159). Springer. https://doi.org/10.1007/978-3-
030-92124-8_9

Geraldo, E., Santos, J. F., & Costa~Seco, J. (2021). Hybrid Information Flow Control for Low-
Level Code. In R. Calinescu & C. S. Pasareanu (Eds.), Software Engineering and Formal

Methods - 19th International Conference, SEFM 2021, Virtual Event, December 6-10,

2021, Proceedings (Vol. 13085, pp. 141–159). Springer. https://doi.org/10.1007/978-3-
030-92124-8_9

Giunti, M., Paulino, H., & Ravara, A. (2023). Anticipation of Method Execution in Mixed
Consistency Systems. Proceedings of the 38th ACM/SIGAPP Symposium on Applied

Computing, 1394–1401. https://doi.org/10.1145/3555776.3577725

Gondron, S., & Mödersheim, S. (2021). Vertical Composition and Sound Payload Abstraction
for Stateful Protocols. Proceedings - IEEE Computer Security Foundations Symposium,
2021-June. https://doi.org/10.1109/CSF51468.2021.00038

Gotsman, A., Yang, H., Ferreira, C., Najafzadeh, M., & Shapiro, M. (2016). ’Cause I’m Strong

Enough: Reasoning about Consistency Choices in Distributed Systems.
https://doi.org/10.1145/2837614.2837625

Groote, J. F., & Mousavi, M. R. (2014). Modeling and Analysis of Communicating Systems.
MIT Press. https://mitpress.mit.edu/books/modeling-and-analysis-communicating-
systems

Hess, A. V., MÖdersheim, S. A., & Brucker, A. D. (2023). Stateful Protocol Composition in
Isabelle/HOL. ACM Transactions on Privacy and Security, 26(3).
https://doi.org/10.1145/3577020

Hess, A. V., Mödersheim, S., Brucker, A. D., & Schlichtkrull, A. (2021). Performing Security
Proofs of Stateful Protocols. Proceedings - IEEE Computer Security Foundations

Symposium, 2021-June. https://doi.org/10.1109/CSF51468.2021.00006

Hoare, C. A. R. (1985). Communicating Sequential Processes. Prentice-Hall.

Honda, K., Vasconcelos, V. T., & Kubo, M. (1998). Language Primitives and Type Discipline
for Structured Communication-Based Programming. In C. Hankin (Ed.), Programming

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 53 of 57 © 2023-2025 TaRDIS Consortium

Languages and Systems - ESOP’98, 7th European Symposium on Programming, Held

as Part of the European Joint Conferences on the Theory and Practice of Software,

ETAPS’98, Lisbon, Portugal, March 28 - April 4, 1998, Proceedings (Vol. 1381, pp. 122–
138). Springer. https://doi.org/10.1007/BFb0053567

Honda, K., Vasconcelos, V. T., & Yoshida, N. (2000). Secure Information Flow as Typed
Process Behaviour. In G. Smolka (Ed.), Programming Languages and Systems, 9th

European Symposium on Programming, ESOP 2000, Held as Part of the European Joint

Conferences on the Theory and Practice of Software, ETAPS 2000, Berlin, Germany,

March 25 - April 2, 2000, Proceedings (Vol. 1782, pp. 180–199). Springer.
https://doi.org/10.1007/3-540-46425-5_12

Honda, K., Yoshida, N., & Carbone, M. (2008). Multiparty Asynchronous Session Types. 35th

Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
273–284. https://doi.org/10.1145/1328897.1328472

Honda, K., Yoshida, N., & Carbone, M. (2016). Multiparty Asynchronous Session Types.
Journal of the ACM, 63(1–9), 1–67. https://doi.org/10.1145/2827695

Horne, R. (2020). Session Subtyping and Multiparty Compatibility Using Circular Sequents. In
I. Konnov & L. Kovács (Eds.), 31st International Conference on Concurrency Theory,

CONCUR 2020, September 1-4, 2020, Vienna, Austria (Virtual Conference) (Vol. 171, pp.
12:1–12:22). Schloss Dagstuhl - Leibniz-Zentrum für Informatik.
https://doi.org/10.4230/LIPIcs.CONCUR.2020.12

Houshmand, F. (2019). Hamsaz: Replication Coordination Analysis and Synthesis *. ACM

Program. Lang. 3, POPL, Article, 74, 32. https://doi.org/10.1145/3290387

Hu, R., & Yoshida, N. (2016). Hybrid Session Verification Through Endpoint API Generation.
In P. Stevens & A. Wasowski (Eds.), Fundamental Approaches to Software Engineering

- 19th International Conference, FASE 2016, Held as Part of the European Joint

Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven, The

Netherlands, April 2-8, 2016, Proceedings (Vol. 9633, pp. 401–418). Springer.
https://doi.org/10.1007/978-3-662-49665-7_24

Hu, R., & Yoshida, N. (2017). Explicit Connection Actions in Multiparty Session Types. In M.
Huisman & J. Rubin (Eds.), Fundamental Approaches to Software Engineering - 20th

International Conference, FASE 2017, Held as Part of the European Joint Conferences

on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017,

Proceedings (Vol. 10202, pp. 116–133). Springer. https://doi.org/10.1007/978-3-662-
54494-5_7

Hüttel, H., Lanese, I., Vasconcelos, V. T., Caires, L., Carbone, M., Deniélou, P.-M., Mostrous,
D., Padovani, L., Ravara, A., Tuosto, E., Vieira, H. T., & Zavattaro, G. (2016). Foundations
of Session Types and Behavioural Contracts. ACM Comput. Surv., 49(1), 3:1–3:36.
https://doi.org/10.1145/2873052

Jacomme, C., & Kremer, S. (2018). An extensive formal analysis of multi-factor authentication
protocols. Proceedings - IEEE Computer Security Foundations Symposium, 2018-July.
https://doi.org/10.1109/CSF.2018.00008

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 54 of 57 © 2023-2025 TaRDIS Consortium

Kholod, I., Yanaki, E., Fomichev, D., Shalugin, E., Novikova, E., Filippov, E., & Nordlund, M.
(2021). Open-Source Federated Learning Frameworks for IoT: A Comparative Review
and Analysis. Sensors, 21(1), 167. https://doi.org/10.3390/s21010167

Kobayashi, N. (2005). Type-based information flow analysis for the pi-calculus. Acta

Informatica, 42(4–5), 291–347. https://doi.org/10.1007/s00236-005-0179-x

Konečný, J., McMahan, H. B., Yu, F. X., Richtárik, P., Suresh, A. T., & Bacon, D. (2017).
Federated Learning: Strategies for Improving Communication Efficiency.
http://arxiv.org/abs/1610.05492

Kuhn, R., Melgratti, H. C., & Tuosto, E. (2023). Behavioural Types for Local-First Software. In
K. Ali & G. Salvaneschi (Eds.), 37th European Conference on Object-Oriented

Programming, ECOOP 2023, July 17-21, 2023, Seattle, Washington, United States (Vol.
263, pp. 15:1–15:28). Schloss Dagstuhl - Leibniz-Zentrum für Informatik.
https://doi.org/10.4230/LIPIcs.ECOOP.2023.15

Kunnemann, R., Esiyok, I., & Backes, M. (2019). Automated verification of accountability in
security protocols. Proceedings - IEEE Computer Security Foundations Symposium,
2019-June. https://doi.org/10.1109/CSF.2019.00034

Küsters, R., Truderung, T., & Vogt, A. (2010). Accountability: Definition and relationship to
verifiability. Proceedings of the ACM Conference on Computer and Communications

Security. https://doi.org/10.1145/1866307.1866366

Lehmann, A., & Fahland, D. (2012). Information Flow Security for Business Process Models -
just one click away. Proceedings of the 10th International Conference on Business

Process Management - Demo Track (BPM 2012).

Li, X., Houshmand, F., & Lesani, M. (2020). Hampa: Solver-Aided Recency-Aware Replication.
Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 12224 LNCS.
https://doi.org/10.1007/978-3-030-53288-8_16

Lourenço, L., & Caires, L. (2015). Dependent Information Flow Types. Proceedings of the 42nd

Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
317–328. https://doi.org/10.1145/2676726.2676994

McMahan, B. (n.d.). “‘Federated Learning from Research to Practice’”, a presentation hosted

by Carnegie Mellon University seminar series.
https://www.pdl.cmu.edu/SDI/2019/slides/2019-09-05Federated%20Learning.pdf

McMahan, B., Moore, E., Ramage, D., Hampson, S., & y Arcas, B. A. (2017). Communication-
Efficient Learning of Deep Networks from Decentralized Data. In A. Singh & X. (Jerry)
Zhu (Eds.), Proceedings of the 20th International Conference on Artificial Intelligence and

Statistics, AISTATS 2017, 20-22 April 2017, Fort Lauderdale, FL, USA (Vol. 54, pp. 1273–
1282). PMLR. http://proceedings.mlr.press/v54/mcmahan17a.html

Miu, A., Ferreira, F., Yoshida, N., & Zhou, F. (2021). Communication-safe web programming
in TypeScript with routed multiparty session types. In A. Smith, D. Demange, & R. Gupta

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 55 of 57 © 2023-2025 TaRDIS Consortium

(Eds.), CC ’21: 30th ACM SIGPLAN International Conference on Compiler Construction,

Virtual Event, Republic of Korea, March 2-3, 2021 (pp. 94–106). ACM.
https://doi.org/10.1145/3446804.3446854

Mödersheim, S., & Bruni, A. (2016). AIF-ω: Set-based protocol abstraction with countable
families. Lecture Notes in Computer Science (Including Subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), 9635.
https://doi.org/10.1007/978-3-662-49635-0_12

Mödersheim, S., & Cuellar, J. (2021). Three Branches of Accountability. In Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics): Vol. 13066 LNCS. https://doi.org/10.1007/978-3-030-91631-
2_16

Mödersheim, S., & Viganò, L. (2009). The open-source fixed-point model checker for symbolic
analysis of security protocols. Lecture Notes in Computer Science (Including Subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5705 LNCS.
https://doi.org/10.1007/978-3-642-03829-7_6

Mödersheim, S., & Viganò, L. (2019). Alpha-Beta Privacy. ACM Trans. Priv. Secur., 22(1).
https://doi.org/10.1145/3289255

Myers, A. C., & Liskov, B. (2000). Protecting Privacy Using the Decentralized Label Model.
ACM Trans. Softw. Eng. Methodol., 9(4), 410–442.
https://doi.org/10.1145/363516.363526

Paulino, H. and A. M. A. and C. J. and G. M. and M. J. and R. A. (2023). AtomiS: Data-Centric
Synchronization Made Practical. ACM SIGPLAN International Conference on Object-

Oriented Programming Systems, Languages, and Applications (OOPSLA) .

Paulson, L. C. (1998). Inductive approach to verifying cryptographic protocols. Journal of

Computer Security, 6(1–2). https://doi.org/10.3233/JCS-1998-61-205

Perino, D., Katevas, K., Lutu, A., Marin, E., & Kourtellis, N. (2022). Privacy-preserving AI for
future networks. Commun. ACM, 65(4), 52–53. https://doi.org/10.1145/3512343

Popovic, M., Popovic, M., Kastelan, I., Djukic, M., & Ghilezan, S. (2023). A Simple Python
Testbed for Federated Learning Algorithms. 2023 Zooming Innovation in Consumer

Technologies Conference (ZINC), 148–153.
https://doi.org/10.1109/ZINC58345.2023.10173859

Privacy-Preserving Artificial Intelligence to advance humanity. (n.d.). https://sherpa.ai

Prokic, I., Ghilezan, S., Kasterovic, S., Popovic, M., Popovic, M., & Kastelan, I. (2023). Correct
orchestration of Federated Learning generic algorithms: formalisation and verification in
CSP. CoRR, abs/2306.14529. https://doi.org/10.48550/arXiv.2306.14529

Ribeiro, M., Singh, S., & Guestrin, C. (2016). ``Why Should I Trust You?’’: Explaining the
Predictions of Any Classifier. Proceedings of the 2016 Conference of the North American

Chapter of the Association for Computational Linguistics: Demonstrations, 97–101.
https://doi.org/10.18653/v1/N16-3020

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 56 of 57 © 2023-2025 TaRDIS Consortium

Rocha, P., & Caires, L. (2021). Propositions-as-types and shared state. Proceedings of the

ACM on Programming Languages, 5(ICFP), 1–30. https://doi.org/10.1145/3473584

Rocha, P., & Caires, L. (2023). Safe Session-Based Concurrency with Shared Linear State
(pp. 421–450). https://doi.org/10.1007/978-3-031-30044-8_16

Santos, J. F., Maksimovic, P., Naudziuniene, D., Wood, T., & Gardner, P. (2018). JaVerT:
JavaScript verification toolchain. Proceedings of the ACM Programming Languages,
2(POPL), 50:1–50:33. https://doi.org/10.1145/3158138

Scalas, A., & Yoshida, N. (2019). Less is more: multiparty session types revisited. Proc. ACM

Program. Lang., 3(POPL), 30:1–30:29. https://doi.org/10.1145/3290343

Scalas, A., Yoshida, N., & Benussi, E. (2019). Verifying message-passing programs with
dependent behavioural types. In K. S. McKinley & K. Fisher (Eds.), Proceedings of the

40th ACM SIGPLAN Conference on Programming Language Design and Implementation,

PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019 (pp. 502–516). ACM.
https://doi.org/10.1145/3314221.3322484

Simic, M., Prokic, I., Dedeic, J., Sladic, G., & Milosavljevic, B. (2021). Towards Edge
Computing as a Service: Dynamic Formation of the Micro Data-Centers. IEEE Access, 9,
114468–114484. https://doi.org/10.1109/ACCESS.2021.3104475

Simonet, V. (2003). Flow Caml in a Nutshell. In G. Hutton (Ed.), Proceedings of the first

APPSEM-II workshop (pp. 152–165).

Snelting, G., Giffhorn, D., Graf, J., Hammer, C., Hecker, M., Mohr, M., & Wasserrab, D. (2014).
Checking probabilistic noninterference using JOANA. It Inf. Technol., 56(6), 280–287.
http://www.degruyter.com/view/j/itit.2014.56.issue-6/itit-2014-1051/itit-2014-1051.xml

Södergård, C., Tuikka, T., & et al. (2020). Strategic Research, Innovation and Deployment

Agenda: AI, Data and Robotics Partnership (S. Zillner, D. Bisset, M. Milano, & E. Curry,
Eds.; 3rd ed.).

Strom, R. E., & Yemini, S. (1986a). Typestate: A Programming Language Concept for
Enhancing Software Reliability. IEEE Trans. Software Eng., 12(1), 157–171.
https://doi.org/10.1109/TSE.1986.6312929

Strom, R. E., & Yemini, S. (1986b). Typestate: A Programming Language Concept for
Enhancing Software Reliability. IEEE Trans. Software Eng., 12(1), 157–171.
https://doi.org/10.1109/TSE.1986.6312929

Sun, J., Liu, Y., Dong, J. S., & Pang, J. (2009). PAT: Towards Flexible Verification under
Fairness. In A. Bouajjani & O. Maler (Eds.), Computer Aided Verification, 21st

International Conference, CAV 2009, Grenoble, France, June 26 - July 2, 2009.

Proceedings (Vol. 5643, pp. 709–714). Springer. https://doi.org/10.1007/978-3-642-
02658-4_59

TensorFlow Federated: Machine Learning on Decentralized Data. (n.d.).
https://www.tensorflow.org/federated

TaRDIS | D4.1: Report on the desirable properties for analysis

 Page 57 of 57 © 2023-2025 TaRDIS Consortium

Toro, M., Garcia, R., & Tanter, É. (2018). Type-Driven Gradual Security with References. Type-

Driven Gradual Security with References. ACM Transactions on Programming

Languages and Systems, 40(4), 1–55. https://doi.org/10.1145/3229061ï

van der Aalst, W. M. P., Artale, A., Montali, M., & Tritini, S. (2017). Object-Centric Behavioral
Constraints: Integrating Data and Declarative Process Modelling. In A. Artale, B. Glimm,
& R. Kontchakov (Eds.), Proceedings of the 30th International Workshop on Description

Logics, Montpellier, France, July 18-21, 2017 (Vol. 1879). CEUR-WS.org. http://ceur-
ws.org/Vol-1879/paper51.pdf

Viering, M., Hu, R., Eugster, P., & Ziarek, L. (2021). A multiparty session typing discipline for
fault-tolerant event-driven distributed programming. Proc. ACM Program. Lang.,
5(OOPSLA), 1–30. https://doi.org/10.1145/3485501

Volpano, D. M., Irvine, C. E., & Smith, G. (1996). A Sound Type System for Secure Flow
Analysis. J. Comput. Secur., 4(2/3), 167–188. https://doi.org/10.3233/JCS-1996-42-304

Ying, B., Yuan, K., Chen, Y., Hu, H., Pan, P., & Yin, W. (2021). Exponential Graph is Provably

Efficient for Decentralized Deep Training.

Ying, B., Yuan, K., Hu, H., Chen, Y., & Yin, W. (2021). BlueFog: Make Decentralized
Algorithms Practical for Optimization and Deep Learning. CoRR, abs/2111.04287.
https://arxiv.org/abs/2111.04287

Yoshida, N., Hu, R., Neykova, R., & Ng, N. (2013). The Scribble Protocol Language. In M.
Abadi & A. Lluch-Lafuente (Eds.), Trustworthy Global Computing - 8th International

Symposium, TGC 2013, Buenos Aires, Argentina, August 30-31, 2013, Revised Selected

Papers (Vol. 8358, pp. 22–41). Springer. https://doi.org/10.1007/978-3-319-05119-2_3

Yoshida, N., Zhou, F., & Ferreira, F. (2021). Communicating Finite State Machines and an
Extensible Toolchain for Multiparty Session Types. In E. Bampis & A. Pagourtzis (Eds.),
Fundamentals of Computation Theory - 23rd International Symposium, FCT 2021,

Athens, Greece, September 12-15, 2021, Proceedings (Vol. 12867, pp. 18–35). Springer.
https://doi.org/10.1007/978-3-030-86593-1_2

Zhang, T., He, C., Ma, T., Gao, L., Ma, M., & Avestimehr, S. (2021). Federated Learning for
Internet of Things. Proceedings of the 19th ACM Conference on Embedded Networked

Sensor Systems, 413–419. https://doi.org/10.1145/3485730.3493444

